Combined Inhibition of Janus and Aurora Kinases by the Novel Small Molecule Inhibitor AZD1480 Induces Cell Death and Downregulates PD-L1 and PD-L2 Expression In Hodgkin Lymphoma

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2848-2848
Author(s):  
Enrico Derenzini ◽  
Daniela Buglio ◽  
Hiroshi Katayama ◽  
Yuan Ji ◽  
Subrata Sen ◽  
...  

Abstract Abstract 2848 Hodgkin Lymphoma (HL) cell proliferation and survival is sustained by a complex network of cytokine signaling, involving the Hodgkin and Reed-Sternberg cells and tumor microenvironment. Following cytokine stimulation, JAK-STAT activation promotes the transcription of target genes involved in proliferation, survival, and immune escape. Programmed Death-ligands 1 and 2 (PD-L1 and PD-L2) and the Th2 chemokine TARC are immune-modulators involved in immune evasion, respectively through inhibition of effector T cell function (PD-L1, PD-L2) and attraction and homing of Th2 cells (TARC). Aurora kinases are frequently overexpressed in human cancers and play essential functions in chromosome alignment and cytokinesis. The role of Aurora kinases in Hodgkin lymphomagenesis is not defined yet. In this study we report the activity profile of the JAK2 inhibitor AZD1480 in HL cell lines (HD-LM2, L-428, KM-H2, L-540). To assess the effect of AZD1480 on cell proliferation, cells were incubated with increasing concentrations of AZD1480 (from 0.1 to 10 μM) for 24, 48 and 72 hours (hrs). A significant growth inhibition was evident after 72 hrs of incubation, specially using the high doses of AZD1480 (5μM). The L-540 cell line showed the highest sensitivity, with a decrease in cell viability close to 50% following incubation with AZD1480 1μM. Inhibition of STAT3, STAT5 and STAT6 phosphorylation in the L-540, L-428 and HD-LM2 cell lines was observed with concentrations equal to 0.1 μM or higher. Using Annexin V- propidium iodide staining, we found that AZD1480 induced cell death by apoptosis in a dose dependent manner after 72 hrs of incubation when a high concentration (5μM) of the drug was used. Lower concentrations of AZD1480 (1μM) promoted a statistically significant increase in cell death only in the L-540 and to a lesser extent in the L-428 cell line. Consistent with this data, also caspase 9, 3 and PARP cleavage was observed in all the cell lines exposed to AZD1480 5 μM. AZD1480 5μM promoted a marked increase in the G2/M fraction in all the cell lines as soon as 24 hrs after incubation, especially in the HD-LM2 and L-428 cell lines. Treatment with lower doses (1μM) did not affect significantly the cell cycle. Since AZD1480 was also reported to inhibit Aurora A kinase at nanomolar concentrations in enzymatic assays, we assessed if the significant increase in the G2/M fraction was related to the inhibition of the Aurora A kinase. We evaluated the levels of autophosphorylation on Thr-288 by western blotting. Cells were pretreated with Nocodazole 400 ng/ml for 18 hrs in order to achieve a mitotic block, and then exposed to AZD1480 (1-5μM) and/or the proteasome inhibitor MG132 (20μM) (in order to prevent the potential overriding of the Nocodazole induced mitotic block), for 3 hours. A dose-dependent inhibition of Aurora A was detected in all the cell lines, with a complete abrogation when higher doses of AZD1480 were used (5μM). These findings are consistent with the analysis of the cell cycle fractions, showing dose-dependent changes of the cell cycle at 24 hrs following incubation with AZD1480. AZD1480 also decreased the secretion of key cytokines involved autocrine and paracrine survival loops and immune escape. Following incubation with AZD1480 1μM for 72 hrs cell culture supernatants were analyzed by ELISA: decreased levels of IL-6, IL-13, TARC, and IL-21 were observed in HD-LM2, L-428 and L-540 cells. Moreover we assessed the expression of PD-L1 and PD-L2 by flow cytometry and observed significant downregulation in the PD-L1/PD-L2 overexpressing cell lines (L-540 and HD-LM2). These data suggest that AZD1480 has a pleiotropic mechanism of action in HL by targeting the JAK-STAT and the Aurora kinase pathway, and by altering the pattern of cytokine and chemokine secretion and the expression of factors involved in immune escape. Our study provides the rationale for further clinical investigation of AZD1480 in HL. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 18 (5) ◽  
pp. 739-746 ◽  
Author(s):  
Raj Kaushal ◽  
Nitesh Kumar ◽  
Archana Thakur ◽  
Kiran Nehra ◽  
Pamita Awasthi ◽  
...  

Abstract: Background: After the discovery of cisplatin, first non platinum anticancer drugs having excellent efficacy were budotitane and TiCl2(cp)2 but action mechanism is not clear. Therefore, we hereby reporting synthesis and biological activities novel titanium complexes to explore their mode of action. Objectives: Synthesis, spectral characterization, antibacterial and anticancer activity of some titanium complexes. Antibacterial studies on various bacterial strains and anticancer studies on HeLa, C6, CHO cancerous cell lines have been performed. Further, the cell death mechanistic study was done on CHO cell lines. Method: Titanium complexes with and without labile groups have been synthesized by reacting of TiCl4 with nitrogen containing ligands viz. 1,2-diaminocyclohexane, 1,10-Phenanthroline, adamantylamine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine in predetermined molar ratios. Antibacterial and anticancer studies were performed by agar well diffusion method and MTT assay respectively. Cell cycle analysis is done by using flow cytometry. Results: Complex 2 i.e TiCl2(Phen)2 showed better activity than other complexes as an antibacterial as well as anticancer agent. Phase contrast imaging indicates that observed morphological changes of cells was dose dependent. Cell death mechanistic study have shown the increase in sub G0 phase population as well as formation of blebbing and fragmentation of chromatin material which is an indicative measure of apoptosis. Conclusion: Complex 2 proved to be more effective bactericide and cytotoxic agent. Cell cycle analysis showed cell arrest in G0 phase. Apoptosis percentage was found to increase in a dose dependent manner. So, prepared titanium complexes can be put to use as an important chemotherapeutic agents.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1366-1366 ◽  
Author(s):  
Miki Kobayashi ◽  
Satoki Nakamura ◽  
Takaaki Ono ◽  
Yuya Sugimoto ◽  
Naohi Sahara ◽  
...  

Abstract Background: The conserved Aurora family kinases, a family of mitotic serine/threonine kinases, have three members (Aurora-A, -B and -C) in mammalian cells. The Aurora kinases are involved in the regulation of cell cycle progression, and alterations in their expression have been shown to associate with cell malignant transformation. Aurora A localizes to the centrosomes during anaphase, and it is required for mitotic entry. Aurora B regulates the formation of a stable bipolar spindle-kinetochore attachment in mitosis. The function of Aurora-C in mammalian cells has not been studied extensively. In this study, we investigated that human leukemia cells expressed all 3 Aurora kinases at both protein and mRNA level, and the mechanisms of cell cycle regulation by knock down of Aurora C in leukemia cells. Methods: In this study, we used the 7 human leukemia cell lines, K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells. The expression levels of mRNA and proteins of Aurora kinases were evaluated by RT-PCR and western blot. The analysis of proliferation and cell cycle were performed by MTT assay and FCM, respectively. Results: The mRNA of Aurora-A and Aurora-B are highly expressed in human leukemia cell lines (K562, NB4, HL60, U937, CEM, MOLT4, SUP-B15 cells), while the mRNA of Aurora C is not only expressed highly in all cells. In contrast, an increase in the protein level of the 3 kinases was found in all cell lines. These observations suggested posttranscriptional mechanisms, which modulate the expression of Aurora C. In cell cycle analysis by flow cytometory, the knock down of Aurora C by siRNA induced G0/G1 arrest and apoptosis in leukemia cells, and increased the protein levels of p27Kip1 and decreased Skp2 by western blot. In MTT assay, it was revealed that the growth inhibition of leukemia cells transfected with siRNA Aurora C compared with leukemia cells untransfected with siRNA Aurora C. Moreover, We showed that Aurora C was associated with Survivin and directly bound to Survivin by immunoprecipitation and western blot. Conclusion: We found that human leukemia cells expressed all 3 members of the Aurora kinase family. These results suggest that the Aurora kinases may play a relevant role in leukemia cells. Among these Aurora kinases, Aurora C interacted with Survivin and prevented apoptosis of leukemia cells, and induced cell cycle progression. Our results showed that Aurora-C may serve as a key regulator in cell division and survival. These results suggest that the Aurora C kinase may play an important role in leukemia cells, and may represent a target for leukemia therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1719-1719 ◽  
Author(s):  
Gullu Gorgun ◽  
Elisabetta Calabrese ◽  
Mala Mani ◽  
Teru Hideshima ◽  
Hiroshi Ikeda ◽  
...  

Abstract Multiple myeloma (MM) is an incurable bone marrow derived plasma cell malignancy. Despite significant improvements in treating patients suffering from this disease, MM remains uniformly fatal owing to intrinsic or acquired drug resistance. Thus, additional modalities for treating MM are required. In this study, we examined the anti-tumor activity of MLN8237, a small molecule Aurora-A kinase inhibitor, in experimental models of MM. Aurora-A is a mitotic kinase that localizes to centrosomes and the proximal mitotic spindle and functions in mitotic spindle formation and in regulating chromatid congression and segregation. Aurora-A gene amplification and protein overexpression is a common event in many cancers, and has been experimentally linked to genetic instability and tumorigenesis. In MM, increased Aurora-A gene expression has previously been correlated with centrosome amplification and a worsened disease prognosis. Thus, inhibition of Aurora A in MM may prove to be therapeutically beneficial. Here we show that Aurora-A protein is highly expressed in eight distinct MM cell lines. The affect of Aurora-A inhibition in these cell lines was examined in cytotoxicity (MTT viability) and proliferation (3[H]thymidine incorporation) assays by treating with MLN8237 (0.25 mM −32 mM) for 24, 48 and 72h. Although there was no significant inhibition of cell viability and proliferation at 24h, a marked effect occurred 48 and 72h after compound addition at concentrations as low as 0.25 mM. Interestingly, the melphalan resistant line (LR5) and Doxorubucin resistant line (Dox40) were among the least sensitive to MLN8237 induced cell cytotoxicity. The affect of MLN8237 on peripheral blood mononuclear cells (PBMCs) from healthy donors was also examined at the same concentrations and exposure time used for the MM cell lines. In healthy PBMCs, MLN8237 did not induce cytotoxicity as measured by the MTT assay, but there was a significant inhibition of proliferation at 48 and 72h as measured by the 3[H]thymidine incorporation assay at concentrations above 4uM. To delineate the mechanisms of cytotoxicity and growth inhibitory activity of MLN8237, apoptotic markers and cell cycle profiles were examined in the MM cell lines. Fluorescence conjugated-Annexin V and propidium iodide (PI) co-staining of MM cell lines after culturing in the presence or absence of MLN8237 at 1 mM (IC50) for 24, 48 and 72h demonstrated that MLN8237 induces apoptosis in these lines. This finding was corroborated by demonstrating increased capase-9 expression by Western blot analysis. Cell cycle analysis by flow cytometry demonstrated that MLN8237 results in an accumulation of tetraploid cells, presumably by abrogating G2/M progression. These results suggest that MLN8237 represents a possible novel agent for treating MM patients. Additional studies are ongoing to assess the anti-tumor effects of MLN8237 alone and in combination with other therapeutic agents in xenograft models of MM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1848-1848
Author(s):  
Utkarsh Painuly ◽  
Vijay G. Ramakrishnan ◽  
Teresa K. Kimlinger ◽  
S. Vincent Rajkumar ◽  
Shaji K. Kumar

Abstract Abstract 1848 Background: Aurora kinases play an important role in cell division by controlling chromatid segregation. Aberrant functions of aurora kinases result in genetic instability, a condition often seen in cancers. While Aurora A is important in the alignment of the sister chromatids, Aurora B, a spindle fiber associated kinase, heavily influences the equal division of sister chromatids and along with the Aurora C kinase also assists in a regulated cell division. Inhibition of either of the Aurora family kinases affects chromosomal alignment and segregation during the course of cell division resulting in polyploidy, cell growth arrest and ultimately cell death. VEGF has been implicated in the increased angiogenesis in MM patients. Increase in VEGF levels leads to upregulation in the Ras/Mek/Erk pathway and increased angiogenesis, cell proliferation and decreased apoptosis. Inhibiting this pathway has shown to induce apoptosis in MM cells. We therefore investigated the role of a small molecule inhibitor A-1014907 that inhibits both aurora kinases and VEGF stimulated Ras/Mek/Erk pathway. Methods: A-1014907 was synthesized and provided by Abbott Laboratories Ltd. Stock solutions were made in DMSO, and subsequently diluted in RPMI-1640 medium for use. MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum, penicillin, and streptomycin. Cytotoxicity was measured using the MTT viability assay and proliferation using thymidine uptake. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI) for cell lines and patient cells. Immunoblotting was done on cell extracts at various time points following incubation with the drug in order to study the cell signaling pathways. Results: A-1014907 was able to induce cytotoxicity and inhibit proliferation in all MM cell lines tested with IC50 values between 50–100nM. Similar extents of inhibition of proliferation was also observed when MM cells were co-cultured with bone marrow stromal cells or HUVEC cells or tumor promoting cytokines IL6, IGF and VEGF. The increase in cytotoxicity was due to apoptotic cell death observed in both MM cell lines and patient cells. Cell cycle assays demonstrated that A-1014907 was able to induce cell cycle arrest at the G2/M stage of cell cycle followed by polyploidy indicative of Aurora B inhibition. We also observed an increase over time the proportion of cells in sub G0/G1 stage indicative of cell death. Western blots were performed to understand the mechanism of action of A-1014907. We observed that A-1014907 was able to significantly down regulate Aurora B activity as measured by pHistone H3 (Ser 10) down regulation. This was accompanied by up regulation of p21 and down regulation of CDK4 and cyclin E both indicative of G2/M arrest. We also observed the ability of A-1014907 to inhibit the Ras/Mek/Erk pathway by measuring levels of pErk post treatment with the drug. A-1014907 potently inhibited pErk levels and this down regulation was also observed when MM cells were co-cultured with either VEGF or HUVEC cells. Furthermore, A-1014907 at sub IC50 doses induced synergistic cell death of MM cell lines when combined with sub IC50 doses of dexamethasone Conclusion and current studies: A-1014907 clearly inhibits the Ras/Mek/Erk pathway and aurora B activity and induces apoptosis in MM cell lines and patient cells. We are currently using siRNA to aurora A in combination with A-1014907. We are also examining the mechanism of action of dexamethasone in combination with A-1014907. All this will help to design clinical trials with A-1014907 either alone or in combination with other anti-MM agents in MM patients. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Merck: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Research Funding; Novartis: Research Funding; Genzyme: Research Funding; Cephalon: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3124-3124 ◽  
Author(s):  
Maria Cosenza ◽  
Monica Civallero ◽  
Samantha Pozzi ◽  
Luigi Marcheselli ◽  
Stefano Sacchi

Abstract Background and Purpose. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new therapeutic option for lymphoid malignancies. Rocilinostat (ACY-1215) is a novel selective histone deacetylase 6 (HDAC6) inhibitor. HDAC6 is a class IIB histone deacetylase that plays an important role in cellular response to environmental stress. The purpose of the present study was to evaluate the preclinical activity of HDAC6 inhibitor rocilinostat (Acetylon) alone and the potential of combining of rocilinostat with bendamustine (alkylating agent) in lymphoma cell lines. Methods. Anti-tumor activity of rocilinostat was investigated using a panel of six lymphoma cell lines: two follicular lymphoma (FL) (WSU-NHL, RL), two mantle cell lymphoma (MCL) (Granta-519, Jeko-1) and two T-cell lymphoma (TCL) (HUT-78 - cutaneous T cell lymphoma and Karpas-299 - anaplastic lymphoma cells). IC50 values of each drug were calculated from curves based on rocilinostat concentrations (0,01 - 100 µM), and bendamustine (25 - 300 µM) after 24, 48 and 72 h. The cell proliferation was determined by using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay kit and cell cytotoxicity with MTT-assay. The interaction between drugs was evaluated by isobologram analysis based upon the Chou-Talalay method to determine if the combination were additive or synergistic. Apoptosis and cell cycle analysis were measured by flow cytometry. Results . Exposure of lymphoma cell lines for 24 - 72 h resulted in time- and dose-dependent inhibition of cell growth with IC50 values ranging from 0.17 to 8.65 μmol/L. Significant cytotoxic effect was evident after 48 hours of rocilinostat incubation by MTT assays with the most sensitive cell lines being WSU-NHL and Hut-78 (IC50: 1.97 – 1.5 μmol/L) and the least sensitive being Granta-519 (IC50: 20 μmol/L). Rocilinostat alone induced time- and dose-dependent increases in apoptosis. After 48 h of treatment with doses ranging from 1 to 20 μmol/L, the percentage of apoptotic cells in early and late apoptosis increased from 11% to 56% and induced an increase in the percentage of cells in the G0/G1 phase of the cell cycle compared with untreated controls.Synergy analyses were done using WSU-NHL, Hut-78 and Granta-519 cells treated with different concentrations of rocilinostat (0, 2, 4 and 8 μmol/L) in combination with bendamustine (0, 10, 20, 40, 50 and 100 μmol/L) and lymphoma cells were assayed by MTT at 24 and 48 h. A clear synergistic interaction, confirmed by the Chou-Talalay method, was observed after 24 h using low concentrations of two drugs which are lower than their IC50 values. Acy-1215 (4 and 8 μmol/L) and bendamustine (20 and 40 μmol/L) showed a synergistic interaction with CI (combination index) values ranging between 0.13 and 0,34 in Hut-78 and WSU-NHL cells. The treatment of Granta-519 cells with rocilinostat (20 and 40 μmol/L) with bendamustine (50 and 100 μmol/L) showed CI values of 0,26 and 0,21 respectively. The drug combinations enhanced apoptosis as assessed by AnnexinV/PI staining. The percentage of apoptosis after 24 h ranged from 55 to 80 %. Furthermore, rocilinostat with bendamustine reduced the proportion of cells in the G0/G1 and S phases and caused an increase of “sub-G0/G1” peak. Finally, the combination of rocilinostat with bendamustine did not trigger relevant decreases in the viability of normal peripheral blood mononuclear cells (PBMNCs). Conclusion . These preclinical results indicate that rocilinostat can have marked activity in lymphoma cell lines in combination with bendamustine. Further investigation is required to continue to study the activity of rocilinostat in lymphoma both as a single agent and in combinations. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 25 (10) ◽  
pp. 1760-1772 ◽  
Author(s):  
Esra Karslioglu ◽  
Jeffrey W. Kleinberger ◽  
Fatimah G. Salim ◽  
Amy E. Cox ◽  
Karen K. Takane ◽  
...  

Adult human β-cells replicate slowly. Also, despite the abundance of rodent β-cell lines, there are no human β-cell lines for diabetes research or therapy. Prior studies in four commonly studied rodent β-cell lines revealed that all four lines displayed an unusual, but strongly reproducible, cell cycle signature: an increase in seven G1/S molecules, i.e. cyclins A, D3, and E, and cdk1, -2, -4, and -6. Here, we explore the upstream mechanism(s) that drive these cell cycle changes. Using biochemical, pharmacological and molecular approaches, we surveyed potential upstream mitogenic signaling pathways in Ins 1 and RIN cells. We used both underexpression and overexpression to assess effects on rat and human β-cell proliferation, survival and cell cycle control. Our results indicate that cMyc is: 1) uniquely up-regulated among other candidates; 2) principally responsible for the increase in the seven G1/S molecules; and, 3) largely responsible for proliferation in rat β-cell lines. Importantly, cMyc expression in β-cell lines, although some 5- to 7-fold higher than normal rat β-cells, is far below the levels (75- to 150-fold) previously associated with β-cell death and dedifferentiation. Notably, modest overexpression of cMyc is able to drive proliferation without cell death in normal rat and human β-cells. We conclude that cMyc is an important driver of replication in the two most commonly employed rat β-cell lines. These studies reverse the current paradigm in which cMyc overexpression is inevitably associated with β-cell death and dedifferentiation. The cMyc pathway provides potential approaches, targets, and tools for driving and sustaining human β-cell replication.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 284-284 ◽  
Author(s):  
Daruka Mahadevan ◽  
Wenqing Qi ◽  
Laurence Cooke ◽  
Xiabing Lui ◽  
Daniel Oscar Persky ◽  
...  

Abstract Abstract 284 Aurora kinases (A and B) are oncogenic serine/threonine (S/T) kinases that play central roles in the mitotic phase of the eukaryotic cell cycle. Over-expression of Aurora kinases during the cell cycle over-rides mitotic and spindle check points leading to aneuploidy in many human cancers; Aurora kinases are therefore attractive therapeutic targets. Gene expression profiling in aggressive B- and T-cell non-Hodgkin's lymphoma (NHL) has shown the Aurora kinases to be over-expressed and they may be key component genes of the ‘proliferative' signature. We hypothesized (1) Aurora kinases are over-expressed in human aggressive B-cell NHL (mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL) and transformed follicular lymphoma (TFL)), (2) Aurora ATP-binding site small molecule inhibitor (SMI) is effective in promoting apoptosis in cell culture and tumor growth inhibition (TGI) in mouse xenograft model(s) of NHL, and (3) Aurora SMI will be safe and effective in treating patients with relapsed aggressive B-cell NHL in early phase clinical trials. To analyze Aurora expression, tissue microarrays (TMA) were constructed from 43 patients with DLBCL and 40 with MCL, and Aurora A and B expression optimized with commercially available antibodies by immunohistochemistry (IHC). The IHC was rated as a staining intensity on a scale of 0 to 3+. The NHL TMAs demonstrated intense staining (2+ to 3+) for Aurora A (nucleus) and Aurora B (nucleus) in >60% compared to normal lymph nodes. We also analyzed the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) publicly available database for Aurora A and B expression in MCL and found a worse survival in those with A > B over-expression (p<0.01). Since both Auroras are transforming genes, the LLMPP data support the conclusion that these S/T kinases are associated with a poor prognosis and are potential targets for therapy. Western blotting analysis of 13 B-cell NHL cell lines (DLBCL, MCL and TFL) for Aurora A and B expression showed significant over-expression compared to B-cells isolated from normal lymph nodes. Aurora A knockdown by shRNA in the B-NHL cell lines showed inhibition of mitosis with a polyploid phenotype (4n, 8n) that ends in apoptosis as shown by PARP-cleavage. The Aurora A specific inhibitor (MLN8237) evaluated in the 13 NHL cell lines phenocopies shRNA knockdown with associated inhibition of proliferation (IC50=0.05 mM) and promotes apoptosis (flow cytometry, PARP-cleavage) in a dose-dependent manner. Combination of MLN8237 with a microtubule targeting agent (docetaxel) to abrogate the spindle checkpoint is synergistic in a sequence specific manner. Moreover, MLN8237 effectively inhibits Aurora A auto-phosphorylation and eliminates phospho-histone H3 (Ser10) phosphorylation. Currently, 2 mouse MCL (Granta 519) xenograft models are underway evaluating tumor growth inhibition (TGI), safety and survival of MLN8237 alone and in combination with docetaxel or rituximab respectively. Preliminary data show that MLN8237 is synergistic with docetaxel in TGI in the MCL xenograft model. Together the data suggest inhibition of Aurora kinases may offer a promising treatment strategy for patients with aggressive B-cell NHL [Funded by the Lymphoma SPORE, P50 CA130805501A1, PI: Richard Fisher, MD.]. Disclosures: Rimsza: High Throughput Genomics:.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1551-1551
Author(s):  
Steven I. Park ◽  
Carolina P. Lin ◽  
Dirk P. Dittmer ◽  
Steven P. Angus ◽  
Greg G. Wang ◽  
...  

Abstract Background: The proto-oncogene Myc is a key regulator of cell growth and survival, and aberrant Myc expression plays a significant role in various tumors, including non-Hodgkin lymphoma (NHL). Myc-associated lymphoma is clinically aggressive, more resistant to standard therapies, and associated with a significantly higher rate of mortality. Novel treatment paradigms are needed to improve survival of patients with Myc-associated NHL. Expression of Aurora Kinase (Aurk) has been associated with Myc, and Aurk is thought to be essential for the maintenance of Myc-driven lymphoma. Aurk is required for assembly of the mitotic spindle and plays key roles in cell proliferation. Amplification and overexpression of Aurk have been observed in various human tumors, including lymphoma, and are frequently associated with tumor progression as well as resistance to chemotherapy. Inhibition of Aurk may overcome resistance to chemotherapy and improve clinical outcomes in patients with Myc-overexpressing lymphoma. Methods: Cytotoxicity assays using MTS and trypan blue were used to compare levels of drug sensitivity in lymphoma cell lines resistant or sensitive to a conventional chemotherapeutic drug cyclophosphamide. Apoptosis and cell cycle assays were performed using Annexin V and Propidium Iodide staining. The Multiplexed Inhibitor Beads and quantitative Mass Spectrometry (MIB/MS) assays were used to profile kinome changes in response to Aurk inhibition. Murine xenograft models were used to assess the efficacy and tolerability of single vs. combined therapy. Results: Two Myc-overexpressing cell lines were identified as resistant (Raji) or sensitive (Ramos) to cyclophosphamide, with IC50 of ~ 400 µM and ~ 250 µM, respectively. Raji cells were characterized by increased expression of multidrug resistant protein 1 (MDR1) and mutated p53. There were no significant differences in baseline Aurk or Myc expressions between Raji and Ramos cells. Both cell lines were sensitive to alisertib, an aurora A kinase inhibitor, with maximum cytotoxicity achieved at ~ 100 nM. Combined treatment with alisertib and cyclophosphamide induced more significant cell growth inhibition as compared to treatment with the single agent alone. The combination index (CI) values were less than 1, indicating that alisertib was synergistic to cyclophosphamide in terms of inhibitory effect on tumor cell viability. Alisertib induced apoptosis and pronounced cell cycle arrest, resulting in polyploidy, in Raji cells. Alisertib had little to no effect on Myc, p53, or the total aurora A kinase protein expression in Raji cells although p-Histone-3-Ser10, a downstream target of Aurk, and p-Src levels were significantly decreased at 24 hours of treatment in vitro. Nocodazole-treated cells had reduced p-Aurk level and increased p-Rb as well as increased Mdm2 when treated with alisertib for 24 hours. Athymic nude mice bearing Ramos or Raji lymphoma xenografts were treated with cyclophosphamide, alisertib, or the combination. As expected, all mice bearing Ramos xenograft had complete tumor regression by day 35 of treatment while all mice bearing Raji xenograft had rapid disease progression with median survival of ~ 35 days when treated with cyclophosphamide alone. In contrast, when treated with the combination of cyclophosphamide and alisertib, all mice bearing Raji xenograft had complete regression of tumor by day 35 and had significant improvement in survival (median survival not reached by day 100) compared to the single agent control (p=0.022). Lastly, kinome analysis of Raji xenograft tumors treated with alisertib showed suppression of various kinases involved in Aurk, Src, and PI3K pathways. Western blot of the Raji tumors treated with a prolonged course (25 days) of alisertib showed significant decrease in p-Src and p53 protein levels. Conclusion: Our data demonstrates that alisertib induces synthetic lethality and overcomes chemoresistance in Myc-overexpressing tumors even in the presence of MDR1 overexpression and p53 mutation. The synergistic effect was largely independent of depletion of cytoplasmic level of Myc. Alisertib, when combined with a conventional chemotherapy drug, induced apoptosis and cell cycle arrest of Myc-overexpressing tumor cells in vitro and showed promising anti-tumor activity in mice bearing chemoresistant Myc-overexpressing lymphoma. Disclosures Park: Janssen: Other: travel; Seattle Genetics: Research Funding; Teva: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2087-2087
Author(s):  
Kevin R. Kelly ◽  
Ronan T. Swords ◽  
Devalingam Mahalingam ◽  
Steffan T. Nawrocki ◽  
Ernest Medina ◽  
...  

Abstract Abstract 2087 Poster Board II-64 Acute myeloid leukemia (AML) most frequently affects the elderly, many of whom are unable to tolerate intensive chemotherapy. Therefore, improvements in clinical outcomes for patients with AML largely depend upon the development of novel targeted therapies. Aurora A is a serine/threonine kinase that plays a key role in mitosis by regulating the G2-M transition, centrosome separation, spindle assembly and chromosome segregation. It is overexpressed in AML and has been implicated in genetic instability, disease progression and drug resistance. MLN8237 is a novel orally available Aurora A inhibitor that has entered Phase I and Phase II trials for cancer therapy. Based on the critical role of Aurora A in cell cycle regulation and its intrinsic overexpression in AML cells, we hypothesized that MLN8237 would possess significant antileukemic activity. We tested our hypothesis in established human AML cell lines, primary AML patient specimens, and a mouse model of AML. MLN8237 potently inhibited the in vitro growth and survival of all AML cell lines and primary human AML cells from patients with newly diagnosed AML and patients with relapsed, chemotherapy resistant disease. Mechanistic studies showed that MLN8237 reduced the activity of Aurora A kinase as evidenced by reduced phosphorylation of Aurora A at Thr288. MLN8237 treatment also disrupted normal cell cycle kinetics and induced apoptosis in a dose- and time-dependant manner characterized by the accumulation of G2/M and aneuploid cells prior to the onset of apoptosis. Exposure to MLN8237 led to activation of FOXO3a followed by a dose-dependent increase in the expression of its transcriptional target Bim. These events appear to be important mediators of the pro-apoptotic effects of this agent. We next investigated the ability of MLN8237 to increase the efficacy of cytarabine in AML. Treatment with the combination of MLN8237 and cytarabine resulted in significantly greater apoptosis and more effective inhibition of survival than treatment with either agent alone in AML cell lines and primary patient specimens. MLN8237 and cytarabine cooperated to enhance mitochondrial-mediated apoptosis as evidenced by increased processing of caspases-9 and -3 to active forms. Daily oral administration of MLN8237 to immunodeficient mice bearing AML xenografts was well tolerated, effectively reduced tumor growth and led to the disruption of mitotic spindles and centrosome amplification. Moreover, MLN8237 significantly enhanced the activity of cytarabine to achieve tumor regression. Our data demonstrates that MLN8237 has a multifaceted mechanism of action comprised of pro-apoptotic and growth inhibitory effects. Our collective findings indicate that the combination of MLN8237 and cytarabine represents a novel, very promising therapeutic strategy for AML. A clinical study investigating the safety and efficacy of this combination in patients with refractory AML is planned. Disclosures: Ecsedy: Millennium Pharmaceuticals: Employment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dario R. Roque ◽  
Lu Zhang ◽  
Weiya Z. Wysham ◽  
Jianjun Han ◽  
Wenchuan Sun ◽  
...  

ObjectivesAnti-diabetic biguanide drugs such as metformin may have anti-tumorigenic effects by behaving as AMPK activators and mTOR inhibitors. Metformin requires organic cation transporters (OCTs) for entry into cells, and NT-1044 is an AMPK activator designed to have greater affinity for two of these transporters, OCT1 and OCT3. We sought to compare the effects of NT-1044 on cell proliferation in human endometrial cancer (EC) cell lines and on tumor growth in an endometrioid EC mouse model.MethodsCell proliferation was assessed in two EC cell lines, ECC-1 and Ishikawa, by MTT assay after exposure to NT-1044 for 72 hours of treatment. Apoptosis was analyzed by Annexin V-FITC and cleaved caspase 3 assays. Cell cycle progression was evaluated by Cellometer. Reactive oxygen species (ROS) were measured using DCFH-DA and JC-1 assays. For the in vivo studies, we utilized the LKB1fl/flp53fl/fl mouse model of endometrioid endometrial cancer. The mice were treated with placebo or NT-1044 or metformin following tumor onset for 4 weeks.ResultsNT-1044 and metformin significantly inhibited cell proliferation in a dose-dependent manner in both EC cell lines after 72 hours of exposure (IC50 218 μM for Ishikawa; 87 μM for ECC-1 cells). Treatment with NT-1044 resulted in G1 cell cycle arrest, induced apoptosis and increased ROS production in both cell lines. NT-1044 increased phosphorylation of AMPK and decreased phosphorylation of S6, a key downstream target of the mTOR pathway. Expression of the cell cycle proteins CDK4, CDK6 and cyclin D1 decreased in a dose-dependent fashion while cellular stress protein expression was induced in both cell lines. As compared to placebo, NT-1044 and metformin inhibited endometrial tumor growth in obese and lean LKB1fl/flp53fl/fl mice.ConclusionsNT-1044 suppressed EC cell growth through G1 cell cycle arrest, induction of apoptosis and cellular stress, activation of AMPK and inhibition of the mTOR pathway. In addition, NT-1044 inhibited EC tumor growth in vivo under obese and lean conditions. More work is needed to determine if this novel biguanide will be beneficial in the treatment of women with EC, a disease strongly impacted by obesity and diabetes.


Sign in / Sign up

Export Citation Format

Share Document