Shortened Erythrocyte Life Span and Increased Oxidative Stress In Erythroid Precursors Are Consistent with Normocytic Anemia In Mice with Chronic Inflammation

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3205-3205
Author(s):  
Andrew J. Layman ◽  
Jacqueline M. Langdon ◽  
Qilu Yu ◽  
Olivier D. Prince ◽  
Jeremy D. Walston ◽  
...  

Abstract Abstract 3205 The anemia of inflammation is a common co-morbid condition associated with various infections, autoimmune disorders, and other chronic disease states. In general, hemoglobin levels are mildly to moderately decreased. In vitro studies have demonstrated that pro-inflammatory cytokines can inhibit erythropoiesis at various stages of development, but many of these studies are limited to the analysis of early developmental stages and primarily assess proliferation as opposed to maturation or survival. Sufficient data from in vivo studies and whole animal models are lacking. We characterized the anemia in 8–10 week old C57BL/6 mice with turpentine oil-induced sterile abscess. We found that following 3 weeks of sterile abscess, the mice had a normocytic, normochromic anemia. Using in vivo biotin-labeling of peripheral blood, we found the coefficient describing erythrocyte life span significantly decreased from -0.044 ± 0.002 SE in control mice to -0.048 ± 0.002 SE in mice with sterile abscess (p = 0.04). In further support of the mechanism of increased erythrocyte turnover, we found that splenic macrophages isolated from mice with abscess significantly increased expression of Heme-regulated gene 1 (Hrg-1) 2.5 fold, (p < .001) and significantly increased expression of Ferroportin (Fpn) 2.76 fold (p = 0.003). Oxidative stress can lead to increased erythrocyte turnover and can inhibit erythroid maturation. To determine whether erythrocytes from mice with sterile abscess had impaired capacity for survival, we assessed staining of peripheral blood and erythroid precursors with chloromethyl dichlorodihydrofluorescein diacetate, acetyl ester (DCF). DCF fluoresces upon oxidation. We found that mean DCF fluorescence intensity (MFI) in peripheral blood increased from 3.2 ± 1.0 in control mice to 5.5 ± 0.6 in mice with abscess (p=0.004). Similarly, we found a greater percentage of bone marrow derived erythroid precursors from mice with abscess had high DCF staining (16.2 ± 3.9%) when compared to control mice (6.7 ± 1.9%, p=0.003). In conclusion, these data support the hypothesis that increased oxidative stress in erythroid precursors of mice with sterile abscess results in increased erythrocyte turnover and normocytic, normochromic anemia. Future studies will investigate whether pro-inflammatory cytokines inhibit the expression of key erythrocyte anti-oxidant enzymes or whether reactive oxygen species from neighboring granulocytes damage erythroid precursors in the bone marrow. Disclosures: No relevant conflicts of interest to declare.

Author(s):  
Mahmood Ahmad Khan ◽  
Rafat Sultana Ahmed ◽  
Nilesh Chandra ◽  
Vinod Kumar Arora ◽  
Athar Ali

Background: Rheumatoid Arthritis (RA) is a devastating disease characterized by continual addition of leukocytes and T cells within the articular cavity causing inflammation and cartilage destruction. Withania somnifera is one of the most precious medicinal herbs, reported to have antioxidant, anti‐inflammatory, and immunomodulatory properties. </P><P> Objective: The purpose of this study was to evaluate anti-inflammatory activity of aqueous extract of Withania somnifera roots (WSAq) in Collagen Induced Arthritic (CIA) rats. </P><P> Methods: To achieve this, we assessed the level of inflammatory cytokines such as Tumor Necrosis Factor (TNF)-&#945;, IL-1&#946;, IL-6 and IL-10 in CIA rats. Further, transcription factor, oxidative stress parameters and CD+8 expressions were also analyzed in CIA rats. </P><P> Results: Arthritic rats showed a greater increase in the levels of pro inflammatory cytokines such as TNF-&#945;, IL-1&#946;, IL-6, transcription factor NF-&#954;B and a decrease in IL-10 concentration than controls rats. Oral administration of WSAq at a dose of 300mg/kg.wt. (WSAq300) appreciably attenuated the production of these pro inflammatory cytokines. This anti-inflammatory activity of WSAq300 might be partly mediated through an increase in the secretion of IL-10 and inhibition of NF-&#954;B activity. Further, arthritic rats also show increased oxidative stress as compared to control rats. This increased oxidative stress in the arthritic rats appears to be the outcome of both an activated pro-oxidant and a poor antioxidant defense system. Treatment with WSAq300 strongly ameliorates all these ROS parameters significantly to near normal. Additional, metalloproteinase MMP-8 levels were also measured and found to be increased in CIA rats, which after treatment with WSAq300 came down to near normal. </P><P> Conclusion: From the above results, it can be concluded that the use of WSAq300 may be a valuable supplement which can improve human arthritis.


2020 ◽  
Vol 35 (3) ◽  
pp. 233-238
Author(s):  
Muflihatul Muniroh

AbstractThe exposure of methylmercury (MeHg) has become a public health concern because of its neurotoxic effect. Various neurological symptoms were detected in Minamata disease patients, who got intoxicated by MeHg, including paresthesia, ataxia, gait disturbance, sensory disturbances, tremors, visual, and hearing impairments, indicating that MeHg could pass the blood-brain barrier (BBB) and cause impairment of neurons and other brain cells. Previous studies have reported some expected mechanisms of MeHg-induced neurotoxicity including the neuroinflammation pathway. It was characterized by the up-regulation of numerous pro-inflammatory cytokines expression. Therefore, the use of anti-inflammatories such as N-acetyl-l-cysteine (NAC) may act as a preventive compound to protect the brain from MeHg harmful effects. This mini-review will explain detailed information on MeHg-induced pro-inflammatory cytokines activation as well as possible preventive strategies using anti-inflammation NAC to protect brain cells, particularly in in vivo and in vitro studies.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroto Nakajima ◽  
Atsushi Miyashita ◽  
Hiroshi Hamamoto ◽  
Kazuhisa Sekimizu

AbstractIn this study, we investigated a new application of bubble-eye goldfish (commercially available strain with large bubble-shaped eye sacs) for immunological studies in fishes utilizing the technical advantage of examining immune cells in the eye sac fluid ex vivo without sacrificing animals. As known in many aquatic species, the common goldfish strain showed an increased infection sensitivity at elevated temperature, which we demonstrate may be due to an immune impairment using the bubble-eye goldfish model. Injection of heat-killed bacterial cells into the eye sac resulted in an inflammatory symptom (surface reddening) and increased gene expression of pro-inflammatory cytokines observed in vivo, and elevated rearing temperature suppressed the induction of pro-inflammatory gene expressions. We further conducted ex vivo experiments using the immune cells harvested from the eye sac and found that the induced expression of pro-inflammatory cytokines was suppressed when we increased the temperature of ex vivo culture, suggesting that the temperature response of the eye-sac immune cells is a cell autonomous function. These results indicate that the bubble-eye goldfish is a suitable model for ex vivo investigation of fish immune cells and that the temperature-induced infection susceptibility in the goldfish may be due to functional impairments of immune cells.


2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2021 ◽  
Vol 160 (6) ◽  
pp. S-574-S-575
Author(s):  
Maria Jesus Villanueva-Millan ◽  
Maritza Sanchez ◽  
Walter Morales ◽  
Gabriela Leite ◽  
Stacy Weitsman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document