Genome Wide Study of DNA Methylation In AML

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3618-3618
Author(s):  
Marwa Saied ◽  
Sabah Khaled ◽  
Thomas Down ◽  
Jacek Marzec ◽  
Paul Smith ◽  
...  

Abstract Abstract 3618 DNA methylation is the most stable epigenetic modification and has a major role in cancer initiation and progression. The two main aims for this research were, firstly, to use the genome wide analysis of DNA methylation to better understand the development of acute myeloid leukemia (AML). The second aim was to detect differentially methylated genes/regions between certain subtypes of AML and normal bone marrow (NBM). We used the methylated DNA immunoprecipitation technique followed by high-throughput sequencing by Illumina Genome Analyser II (MeDIP -seq) for 9 AML samples for which ethical approval has been obtained. The selected leukemias included three with the t(8; 21), three with the t(15; 17) translocations and three with normal karyotypes (NK). The control samples were 3 normal bone marrows (NBMs) from healthy donors. The number of reads generated from Illumina ranged between 18– 20 million paired-end reads/lane with a good base quality from both ends (base quality > 30 represented 75%-85% of reads). The reads were aligned using 2 algorithms (Maq and Bowtie) and the methylation analysis was performed by Batman software (Bayesian Tool for Methylation Analysis). The creation of this genome-wide methylation map for AML permits the examination of the patterns for key genetic elements. Investigation of the 35,072 promoter regions identified 80 genes, which showed a significant differential methylation levels in leukemic cases in comparison to NBM; consistently high methylation levels in leukaemia were detected in the promoters of 70 genes e.g. DPP6, ID4, DCC, whereas high methylation levels in NBM, lost in leukaemia was observed in 10 genes e.g. ATF4. For each AML subtype, we also identified significant differentially methylated promoter regions e.g. PAX1 for t(8; 21), GRM7 for t(15; 17), NPM2 for NK. An analysis of gene body methylation identified 49 genes with significantly higher methylation in AML in comparison to NBM e.g. MYOD1 and 31 genes with a higher methylation in NBMs than AML e.g. GNG8. A similar analysis of 23,600 CpG islands identified 400 CpG islands with significant differential methylation levels between leukaemia and NBMs (212 CpG islands were found to have significantly increased methylation in leukaemia and 188 CpG islands had significantly higher methylation in NBMs). The pattern of methylation in CpG island “shores” (2 KB from either side of each CpG island) has been investigated and 312 CpG island shores showed a higher methylation in leukaemia and 88 CpG shores had a significant increase methylation levels in NBMs. This genome wide methylation map has been validated by using direct bisulfite sequencing of the regions identified above (Spearman r= 0.8, P <0.0001) and also by using Illumina Infinium assay (Spearman r= 0.7 P <0.0001) which interrogates regions at single representative CpGs. Comparison of previous array based gene expression data with this methylation map revealed a significant negative correlation between promoter methylation and gene expression (Pearson r= -0.9, P< 0.0001) while, gene body methylation showed a small negative correlation with gene expression, that was found in genes of CpG density >3% (Pearson r= -0.3, P< 0.0001). Conclusion: we have established a high-resolution (100bp) map of DNA methylation in AML and thus identified a novel list of genes, which have significantly differential methylation levels in AML. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 526-526
Author(s):  
Junfeng Luo ◽  
Justin Choi ◽  
Lirong Pei ◽  
Farrukh Awan ◽  
Eun-Joon Lee ◽  
...  

Abstract Abstract 526 Chronic lymphocytic leukemia (CLL) is a biologically and clinically heterogeneous disease. The somatic hypermutation status of the immunoglobulin heavy chain variable (IGHV) genes has been identified as one of the most robust prognostic markers in CLL. Patients with unmutated IGHV status (U-CLL) typically experience an inferior outcome compared to those whose clones express mutated IGHV genes (M-CLL). We conducted a genome-wide DNA methylation analysis in CD19+ B-cells from a group of 43 CLL patients using reduced representation bisulfite sequencing (RRBS). Using base-pair resolution methylation sequencing, 2323 differentially methylated regions between CLL and normal B cells (CLL-specific DMRs) and 569 between M-CLL and U-CLL samples (IGHV-specific DMRs) were identified in the CLL genomes. The IGHV-specific DMRs are mostly unique when compared to the CLL-specific DMRs. Less than 10% of the IGHV-specific DMRs are located in promoter regions; however, more than half of these overlap with known DNase I hypersensitive sites, enhancer regions marked by histone modification (H3K4Me1 and H3K27Ac), and transcription factor binding sites in the ENCODE datasets, which indicates that these DMRs contain regulatory sequences. Distinctive DNA methylation patterns were observed in M-CLL and U-CLL samples. Overall, U-CLL was found to contain 50% more hypermethylated regions than M-CLL samples. The hypermethylated loci observed in the U-CLL samples also appear to be hypermethylated in normal naïve B cells as compared memory B cells, suggesting that M-CLL and U-CLL differ in differentiation status corresponding to normal B cell differentiation stages. RNA-seq analysis performed using matched samples (n=34), in which both DNA methylation and gene expression data were available, demonstrated excellent correlation between DNA methylation and gene expression. Several genes whose expression status was previously shown to be associated with CLL prognosis such as ZAP70, CRY1, LDOC1, SEPT10, LAG3, and LPL were differentially methylated in the promoter regions between M-CLL and U-CLL samples indicating that DNA methylation plays an important role in defining the gene expression patterns of these prognostic genes. We further validated 9 genes with IGHV-specific DMRs in the promoter regions using bisulfite pyrosequencing, and the results demonstrated excellent correlation between differential methylation and IGHV mutation status. These novel differentially methylated genes could be developed into biomarkers for CLL prognosis. In addition, DNA hypomethylation was observed in a significant number of genes involved in lymphocyte activation such as PDCD1, NFATc1, and CD5. DNA hypomethylation was observed in the proximal promoter and far up-stream enhancer regions of CD5, an important cell surface marker that uniquely identifies CLL. Overall, the DNA methylation landscape in CLL patients indicates that CLL B cells possess an active B-cell phenotype; at the same time, U-CLL and M-CLL are faithfully committed to their lineage resembling either naïve or memory B cells. In summary, this comprehensive DNA methylation analysis has identified a large number of novel epigenetic changes in CLL patients. The results from this study will further advance our understanding of the epigenetic contribution to molecular subtypes in CLL. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


2020 ◽  
Vol 13 ◽  
pp. 251686572095968
Author(s):  
Allison H Rietze ◽  
Yvette P Conley ◽  
Dianxu Ren ◽  
Cindy M Anderson ◽  
James M Roberts ◽  
...  

Objective: We compared blood-based DNA methylation levels of endoglin ( ENG) and transforming growth factor beta receptor 2 ( TGFβR2) gene promoter regions between women with clinically-overt preeclampsia and women with uncomplicated, normotensive pregnancies. Methods: We used EpiTect Methyl II PCR Assays to evaluate DNA methylation of CpG islands located in promoter regions of ENG (CpG Island 114642) and TGFβR2 (CpG Island 110111). Preeclampsia was diagnosed based on blood pressure, protein, and uric acid criteria. N = 21 nulliparous preeclampsia case participants were 1:1 frequency matched to N = 21 nulliparous normotensive control participants on gestational age at sample collection (±2 weeks), smoking status, and labor status at sample collection. Methylation values were compared between case and control participant groups [( ENG subset: n = 20 (9 cases, 11 controls); TGFβR2 subset: n = 28 (15 cases, 13 controls)]. Results: The majority of the preeclampsia cases delivered at ⩾34 weeks’ gestation (83%). Average methylation levels for ENG ([M ± (SD)]; Case Participant Group = 6.54% ± 4.57 versus Control Participant group = 4.81% ± 5.08; P = .102) and TGFβR2 (Case Participant Group = 1.50% ± 1.37 vs Control Participant Group = 1.70% ± 1.40; P = .695) promoter CpG islands did not differ significantly between the participant groups. Removal of 2 extreme outliers in the ENG analytic subset revealed a trend between levels of ENG methylation and pregnancy outcome (Case Participant Group = 5.17% ± 2.16 vs Control Participant Group = 3.36% ± 1.73; P = .062). Conclusion: Additional epigenetic studies that include larger sample sizes, investigate preeclampsia subtypes, and capture methylation status of CpG island shores and shelves are needed to further inform us of the potential role that ENG and TGFβR2 DNA methylation plays in preeclampsia pathophysiology.


2019 ◽  
Vol 37 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Danelle K Seymour ◽  
Brandon S Gaut

Abstract A subset of genes in plant genomes are labeled with DNA methylation specifically at CG residues. These genes, known as gene-body methylated (gbM), have a number of associated characteristics. They tend to have longer sequences, to be enriched for intermediate expression levels, and to be associated with slower rates of molecular evolution. Most importantly, gbM genes tend to maintain their level of DNA methylation between species, suggesting that this trait is under evolutionary constraint. Given the degree of conservation in gbM, we still know surprisingly little about its function in plant genomes or whether gbM is itself a target of selection. To address these questions, we surveyed DNA methylation across eight grass (Poaceae) species that span a gradient of genome sizes. We first established that genome size correlates with genome-wide DNA methylation levels, but less so for genic levels. We then leveraged genomic data to identify a set of 2,982 putative orthologs among the eight species and examined shifts of methylation status for each ortholog in a phylogenetic context. A total of 55% of orthologs exhibited a shift in gbM, but these shifts occurred predominantly on terminal branches, indicating that shifts in gbM are rarely conveyed over time. Finally, we found that the degree of conservation of gbM across species is associated with increased gene length, reduced rates of molecular evolution, and increased gene expression level, but reduced gene expression variation across species. Overall, these observations suggest a basis for evolutionary pressure to maintain gbM status over evolutionary time.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3760-3760
Author(s):  
Violetta V. Leshchenko ◽  
Pei-Yu Kuo ◽  
Deepak Perumal ◽  
Melissa J Fazzari ◽  
Francine E. Garrett-Bakelman ◽  
...  

Abstract Forty-three newly diagnosed MCL patients were treated with single agent Bortezomib followed by DA-EPOCH-R (Dunleavy et al, ASH 2012). To understand the genomic and epigenomic basis of differences in patient outcomes, particularly disease free survival (DFS), we carried out high-resolution genome-wide methylation analysis using enhanced RRBS (ERRBS) and correlated cytosine methylation to gene expression (GE) and patient outcomes. For ERRBS, genomic DNA was extracted from CD19+ selected cells from lymph node biopsies or peripheral blood prior to therapy. Library fragment lengths of 150-250 bp and 250-400 bp were prepared and gel isolated per Akalin et al (PLOS Genetics, 2012) and sequencing was performed on an Illumina Hi-seq 2000. 24 out of 24 patient samples passed quality control with methylation assayed at >3.3 million CpG dinucleotides per sample on average 80x coverage per cytosine. Patients were divided into two groups based on 2 year DFS. There were 39,373 differentially methylated (DM) loci (25% difference in methylation, q<0.01) correlating to 3,968 genes between these two groups. The hyper and hypomethylated loci were annotated with hg19 to find gene associations. The annotated analysis represented 74% and 26% hypermethylated loci located in gene body and promoter regions respectively. Similarly, 70% and 30% of hypomethylated loci were located in gene body and promoter regions. Genomic Regions Enrichment of Annotations Tool (GREAT), a next-generation software aimed at the interpretation of genome-wide cis-regulatory data sets, was used to understand the functional significance of identified DM cytosines. Pathway analysis by GREAT for the DM genes showed significant (p<0.05) enrichment for Wnt and Cadherin signaling pathways. 67% of the DM genes had DNA binding transcription factor activity with tumor suppressors BCOR, HIC1, TP73 from hypomethylated genes and oncogenes GATA3 and MAFB from hypermethylated genes. Simultaneously, Cox proportional hazard models evaluating time-to-progression based on RNA expression using Affymetrix U133 Plus 2 arrays identified 1,933 genes as significantly (p<0.05) associated with DFS. The top canonical pathways enriched by these genes included Protein Kinase A Signaling, PI3K/AKT Signaling, and Protein Ubiquitination Pathway. Top molecular functions of prognostic loci by GEP were cell growth and proliferation. Our analysis has shown that high expression of CDC25A, NFKB2, GLI3, FOXO3, and USP9X were likely associated with increased hazard risk in MCL patient after Bortezomib + DA-EPOCH-R treatment. The gene sets identified by the two platforms were distinct, with only 343 genes in common between DM and DE genes. Based on these findings, we conclude that genomic methylation analysis by next-generation sequencing can identify functionally important cis-regulatory cytosines associated with prognosis in MCL. Prognostic gene sets identified by methylation and gene expression were distinct with transcriptional regulation being the major function of DM genes while cell growth and proliferation being the major function of DE genes. We are developing an integrated prognostic platform for patient outcomes following Bortezomib + DA-EPOCH-R combining genomic methylation and gene expression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3736-3736
Author(s):  
Huimin Geng ◽  
Mignon L. Loh ◽  
Richard C. Harvey ◽  
I-Ming Chen ◽  
Meenakshi Devidas ◽  
...  

Abstract Although survival of children with B-cell acute lymphoblastic leukemia (B-ALL) has improved substantially over time, 15% to 20% of patients will relapse, and most of those who experience a bone marrow relapse will die. A better understanding of genetic and epigenetic aberrations in relapsed ALL will facilitate new strategies for risk stratification and targeted therapy. In this collaborative study with the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project, we performed high resolution genome-wide DNA methylation profiling using the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) array on a total of 178 (110 diagnosis, 68 relapse) leukemia samples from 111 patients with childhood B-ALL enrolled on the Children’s Oncology Group (COG) clinical trials who experienced relapsed, and 12 normal preB samples isolated from the bone marrows of 12 healthy individuals. The HELP array covers 117,521 CpG sites, annotated to ∼22,000 gene promoters. For eight diagnosis/relapse pairs, base-pair resolution DNA methylation using the eRRBS (enhanced Reduced Representation Bisulfite Sequencing) method was also performed on Illumina HiSeq2000. The median relapse time for the 111 patients was 21.8 months (range 2.1 to 56.2). Unsupervised clustering analysis using the HELP data revealed seven clusters: one cluster contained only the 12 normal preB samples; four clusters were enriched with MLLr, ETV6/RUNX1, Trisomy 4+10, and TCF3/PBX1 samples, respectively. The sixth cluster was not enriched for specific cytogenetic cases, but interestingly, all cases in this cluster were NCI High Risk (age>10 years or WBC>=50,000; p<0.0001, Fisher’s Exact test) while the seventh cluster has a mixture of other cases. Supervised analysis of HELP profiles between paired relapse/diagnosis samples (n=67) revealed a markedly aberrant DNA methylation signature (1011 probesets, 888 genes, FDR<0.01 and methylation difference dx >25%, paired t-test), with 70% of the genes hyper- and 30% hypo-methylated in relapse samples. Using a Bayesian predictor and leave-one-out cross validation, this methylation signature could predict a sample as diagnosis or relapse with 95.3% accuracy. When comparing early (<36 months; n=50) versus late relapses (>=36 months; n=18), we detected a profound hypermethylation signature in early relapse (96.6% of the 610 probesets, 544 genes, FDR<0.01, dx >25%). Finally, we identified 1800 probesets (1658 genes) as differentially methylated within all cytogenetic subtypes described above compared to the normal preB samples (Dunnett’s test with normal preB as reference, FDR<0.01, dx>25%). Again the majority (70%) of those genes were hypermethylated in relapse as compared to diagnostic and normal preB. The base-pair resolution and more comprehensive eRRBS methylation analysis for the eight pairs of samples identified 39,679 CpG sites as differentially methylated (dx >25%, FDR<0.01), with 78.2% CpG sites hyper- and 21.2% hypo-methylated in relapse samples. Remarkably, the hypermethylated CpGs are primarily in promoter regions (50%, defined as +/-1kb to TSS), followed by intergenic (26%), then intragenic (14%), and exonic (10%) regions. In contrast, the hypomethylated CpGs are mainly in intragenic (48%), followed by intergenic (31%), exonic (14%) and promoter (7%) regions. The hypermethylated CpGs were mainly in CpG islands (86%) or CpG shores (10%), while hypomethylated CpGs were not (CpG islands: 8%, CpG shores: 27%). We further identified 3040 differentially methylated regions (DMRs) with a median size 426 bp. 78.4% of those DMRs were hyper- (1362 gene promoters) and 21.6% hypo-methylated (98 promoters) in relapse compared to diagnostic samples. Gene set enrichment and Ingenuity pathway analysis showed epigenetically disrupted pathways that are highly involved in cell signaling, and embryonic and organismal development. Taken together, our genome-wide high resolution DNA methylation analysis on a large cohort of relapsed childhood B-ALL from the COG trial identified unique methylation signatures that correlated with relapse and with specific genetic subsets. Those methylation signatures featured prevailing promoter hypermethylation and to a lesser extent, intrageneic hypomethylation. Epigenetically dysregulated gene networks in those relapse samples involved cell signaling, and embryonic and organismal development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (12) ◽  
pp. 2795-2804 ◽  
Author(s):  
Maria E. Figueroa ◽  
Bas J. Wouters ◽  
Lucy Skrabanek ◽  
Jacob Glass ◽  
Yushan Li ◽  
...  

Abstract Acute myeloid leukemia is a heterogeneous disease from the molecular and biologic standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients who shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, whereas the rest presented with silencing of this gene and coexpression of certain T-cell markers. DNA methylation studies revealed that these 2 groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA-silenced leukemias also displayed marked hypermethylation compared with normal CD34+ hematopoietic cells, whereas CEBPA mutant cases showed only mild changes in DNA methylation compared with these normal progenitors. Biologically, CEBPA-silenced leukemias presented with a decreased response to myeloid growth factors in vitro.


2013 ◽  
Vol 20 (8) ◽  
pp. 1033-1041 ◽  
Author(s):  
MC Graves ◽  
M Benton ◽  
RA Lea ◽  
M Boyle ◽  
L Tajouri ◽  
...  

Background: Multiple sclerosis (MS) is thought to be caused by T-cell mediated autoimmune dysfunction. Risk of developing MS is influenced by environmental and genetic factors. Modifiable differences in DNA methylation are recognized as epigenetic contributors to MS risk and may provide a valuable link between environmental exposure and inherited genetic systems. Objectives and methods: To identify methylation changes associated with MS, we performed a genome-wide DNA methylation analysis of CD4+ T cells from 30 patients with relapsing–remitting MS and 28 healthy controls using Illumina 450K methylation arrays. Results: A striking differential methylation signal was observed at chr. 6p21, with a peak signal at HLA-DRB1. After prioritisation, we identified a panel of 74 CpGs associated with MS in this cohort. Most notably we found evidence of a major effect CpG island in DRB1 in MS cases ( pFDR < 3 × 10−3). In addition, we found 55 non-HLA CpGs that exhibited differential methylation, many of which localise to genes previously linked to MS. Conclusions: Our findings provide the first evidence for association of DNA methylation at HLA-DRB1 in relation to MS risk. Further studies are now warranted to validate and understand how these findings are involved in MS pathology.


Sign in / Sign up

Export Citation Format

Share Document