Class IIa HDAC Inhibitors Reduce HDAC1 Activity by off-Target Effects Which Reduce GATA1 Expression In Human Erythroblasts Expanded Ex-Vivo

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4780-4780
Author(s):  
Elena Masselli ◽  
Lilian Varricchio ◽  
Barbara Ghinassi ◽  
Carolyn Whitsett ◽  
Patricia A. Shi ◽  
...  

Abstract Abstract 4780 Histone deacetylation maintains chromatin in a condensed configuration preventing gene expression in eukaryotic cells. The deacetylation reaction is catalyzed by enzymes of the histone deacetylase (HDAC) superfamily, which perform their functions as multiprotein complexes including at least 2 HDAC isoforms, DNA docking factors (transcription factors and methyl-binding proteins) and protein kinases (PKC and Erk). The well established role of HDACs in gene silencing has suggested studies to identify HDAC inhibitors (HDACi) that, by re-activating γ-globin expression, might treat the anemia due to insufficient β-globin expression (Cao et al Blood 103:701, 2004). Over the years several HDACi have been documented to induce γ-globin expression in human erythroid cultures, adult baboons, and β-thalassemia and sickle cell patients. Among those, Class I HDACi, and in particular those that inhibit HDAC3, appear to be more potent as γ-globin gene activators (Mankidy et al, Blood 108:3179, 2006). We have recently identified two new HDACi (compound 9 and 24) which both improved maturation and reactivated γ-globin expression in β°-thalassemic erythroblasts in vitro (Mai et al Mol Pharmacol 72:111, 2007). Compound 24 inhibits both class I (HDAC1 ID50 =0.2 μ M) and class IIa (HDAC4 ID50=0.6 μ M) HDAC. Compound 9 is a class IIa specific inhibitor (HDAC4 ID50=20 μ M) and does not affect HDAC1 activity but is a more potent γ-globin inducer than compound 24. This observation suggests that HDACi may also affect HDAC activity through indirect effects which alter overall complex activity. To clarify possible off-target effects of Class II and Class I/IIa inhibitors and their consequences for erythroid maturation, we analysed expression and activity of different HDAC isoforms during maturation of normal human erythroblasts in vitro at baseline and with treatment with compounds 9 and 24. The proteins studied included GATA1 (the major transcription regulator of erythroid maturation), p21/p27kip1, two cyclin D dependent kinase inhibitors which favor maturation, Caspase 3 (the protease which specifically cleaves GATA1) and Erk (a component of the HDAC complex). During normal erythroid maturation (without HDACi), all the HDAC isoforms were expressed at the mRNA and protein levels. Immunoprecipitation studies followed by determination of HDAC activity indicated that the activities which changed most during maturation are those of HDAC1 (class I), increased by 2-fold, and HDAC5 (class IIa), decreased by 2-fold. In addition, co-immunoprecipitation studies revealed an increase in the association between HDAC1 and GATA1 with erythroid maturation. Changes in the expression of key regulatory proteins were observed with normal erythroid maturation: activation of Caspase 3 decreased with resultant increase in GATA-1, and phosphorylation of pErk decreased while expression of p21 and p27 increased. With exposure to increasing HDACi concentrations (0.2, 2 and 6 μ M), there were class-specific, concentration-dependent alterations in protein expression: compound 9 (Class IIa inhibitor) induced Caspase 3 activation and reduced GATA1 content, while compound 24 decreased Caspase3 activation and greatly increased GATA1 content. In addition, compound 9 did not induce Erk phosphorylation and decreased p21 expression, while compound 24 did induce Erk phosphorylation and inhibited p27 expression (see figure). These results confirm the hypothesis that, in addition to class I inhibitors that directly inhibit class I HDAC, class II HDACi can also affect class I HDAC activity, through indirect effects that involve other components of the complex (repression of GATA1 expression and decrease of Erk phosphorylation). Disclosures: No relevant conflicts of interest to declare.

2011 ◽  
Vol 226 (12) ◽  
pp. 3233-3241 ◽  
Author(s):  
M.D. Cantley ◽  
D.P. Fairlie ◽  
P.M. Bartold ◽  
K.D. Rainsford ◽  
G.T. Le ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3859-3859
Author(s):  
Anri Saito ◽  
Miwako Narita ◽  
Toshio Yano ◽  
Naoko Sato ◽  
Asuka Sekiguchi ◽  
...  

Abstract Transfection with tumor antigen RNA is one of the promising tools not only because of a possible sufficient amplification of tumor antigen RNA but also because of the absence of antigen peptides-associated MHC restriction. Several succeeded experiments about generation of CTLs using DCs transfeced in vitro transcribed (IVT) cancer specific antigen mRNA such as PSA, CEA, hTERT and MUC-1 have been reported in these a few years. In addition, recent reports about the simultaneous presentation of peptides in both MHC class I and class II molecules on DCs after mRNA electroporation show another superiority of mRNA transfection into DCs. In this presentation, we demonstrate successful generation of tumor antigen specific CTLs using with DCs transfected with IVT mRNA such as SART-1 and WT-1 by electroporation. This is the first report about the generation of SART-1 and WT-1 specific CTLs by using mRNA transfected DCs. [Methods] HLA-A24 positive human PB CD14+ cell-derived DCs were transfected with IVT mRNA (SART-1and WT-1) by electroporation. MRNA transfected DCs were co-cultured with autologous lymphocytes. The bulk co-cultures were re-stimulated several times with same DCs. CD8+ cells were separated and CTL activity was evaluated by 51chromium release assay. To determine whether the induced CTL cells could recognize the target cells in an HLA class I restricted manner, anti-HLA class I monoclonal antibodies were utilized to block the cytotoxicity of effectors. [Results] Electroporation of mRNA showed no effect on the surface phenotypes and antigen presenting ability of DCs. In addition to the demonstration of efficient transfection of M1 mRNA into DCs by using RT-PCR, which eliminated the amplification of transfected mRNA by the treatment with RNase before RNA extraction from the transfected cells, we identified the definite expression of WT-1 protein in the cytoplasm of DCs by using immunoblotting. CTL assay indicated that 1) DCs transfected with mRNA stimulated the generation of antigen-specific CTLs which are capable of lysing autologous DCs transfected with the same mRNA. 2) CTLs also demonstrated cytotoxic ability against cell lines such as KE-4 presenting SART-1 peptides on HLA-A24, MEGO1 presenting WT-1 peptides on MHC class I, and HLA-A24 cDNA transfected T2 which were used as target cells after co- incubation with 9 mer SART-1 peptides with strong affinity to HLA-A24. 3) Each cytotoxicities were markedly blocked after co-incubation of target cells with anti-MHC class I antibody and not inhibited with anti-MHC class II antibody. [Conclusion] Our results showed that IVT mRNA-transfected DCs which is constructed non-virally have a highly efficient ability to stimulate specific T-cell immunity against tumor. Unlike peptide- or tumor cells extract-pulsed DCs based vaccines, anti-tumor immunotherapy using the DCs transfected with antigen mRNA could be extended to a wide range of patients who have previously been excluded from clinical trials for the reason of the un-identification of tumor specific antigens, for the reason of the impossibility of obtaining sufficient tumor specimens, or for the reason of MHC restriction of the tumor specific antigens.


2005 ◽  
Vol 79 (16) ◽  
pp. 10356-10368 ◽  
Author(s):  
Richard Lu ◽  
Hina Z. Ghory ◽  
Alan Engelman

ABSTRACT Results of in vitro assays identified residues in the C-terminal domain (CTD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) important for IN-IN and IN-DNA interactions, but the potential roles of these residues in virus replication were mostly unknown. Sixteen CTD residues were targeted here, generating 24 mutant viruses. Replication-defective mutants were typed as class I (blocked at integration) or class II (additional reverse transcription and/or assembly defects). Most defective viruses (15 of 17) displayed reverse transcription defects. In contrast, replication-defective HIV-1E246K synthesized near-normal cDNA levels but processing of Pr55 g ag was largely inhibited in virus-producing cells. Because single-round HIV-1E246K.Luc(R-) transduced cells at approximately 8% of the wild-type level, we concluded that the late-stage processing defect contributed significantly to the overall replication defect of HIV-1E246K. Results of complementation assays revealed that the CTD could function in trans to the catalytic core domain (CCD) in in vitro assays, and we since determined that certain class I and class II mutants defined a novel genetic complementation group that functioned in cells independently of IN domain boundaries. Seven of eight novel Vpr-IN mutant proteins efficiently trans-complemented class I active-site mutant virus, demonstrating catalytically active CTD mutant proteins during infection. Because most of these mutants inefficiently complemented a class II CCD mutant virus, the majority of CTD mutants were likely more defective for interactions with cellular and/or viral components that affected reverse transcription and/or preintegration trafficking than the catalytic activity of the IN enzyme.


1990 ◽  
Vol 171 (2) ◽  
pp. 571-576 ◽  
Author(s):  
H Takahashi ◽  
R N Germain ◽  
B Moss ◽  
J A Berzofsky

We have observed that a peptide corresponding to an immunodominant epitope of the HIV-1 envelope protein recognized by class I MHC-restricted CD8+ CTL can also induce T cell help for itself. The help is necessary for restimulation of CTL precursors in vitro with peptide alone in the absence of exogenous lymphokines, can be removed by depletion of CD4+ T cells, and can be replaced by exogenous IL-2. Whereas the CTL in BALB/c or B10. D2 mice are restricted by the class I molecule Dd, the Th cells are restricted by the class II molecule Ad, and the help can be blocked by anti-Ad mAb. To examine the genetic regulation of the induction of help, we studied B10.A mice that share the class I Dd molecule, but have different class II molecules, Ak and Ek. Spleen cells of immune B10.A mice behave like CD4-depleted BALB/c spleen cells in that they cannot be restimulated in vitro by the peptide alone, but can with peptide plus IL-2. Therefore, in the absence of exogenous lymphokines, peptide-specific help is necessary for restimulation with this immunodominant CTL epitope peptide, and in H-2d mice, this peptide stimulates help for itself as well as CTL. We speculate on the implications of these findings for the immunodominance of this peptide in H-2d mice, and for the selective advantage of pairing certain class I and class II molecules in an MHC haplotype.


1987 ◽  
Vol 165 (6) ◽  
pp. 1508-1523 ◽  
Author(s):  
J Bastin ◽  
J Rothbard ◽  
J Davey ◽  
I Jones ◽  
A Townsend

The conserved epitopes of influenza nucleoprotein (NP) recognized by class I MHC-restricted CTL from CBA (H-2k) and C57BL/10 (H-2b) mice have been defined in vitro with synthetic peptides 50-63 and 365-379, respectively. Two Db-restricted clones were described that recognize different epitopes on peptide 365-379. Finally, the recognition of complete NP was shown to be approximately 200-fold less efficient than peptide in the cytotoxicity assay. These phenomena are closely related to results with class II-restricted T cells and they strengthen the hypothesis that influenza proteins are degraded in the infected cell before recognition by class I-restricted CTL.


2005 ◽  
Vol 25 (24) ◽  
pp. 11122-11130 ◽  
Author(s):  
Kazutoshi Harada ◽  
Amy B. Truong ◽  
Ti Cai ◽  
Paul A. Khavari

ABSTRACT Phosphoinositide 3-kinases (PI3Ks) regulate an array of cellular processes and are comprised of three classes. Class I PI3Ks include the well-studied agonist-sensitive p110 isoforms; however, the functions of class II and III PI3Ks are less well characterized. Of the three class II PI3Ks, C2α and C2β are widely expressed in many tissues, including the epidermis, while C2γ is confined to the liver. In contrast to the class I PI3K p110α, which is expressed throughout the epidermis, C2β was found to be localized in suprabasal cells, suggesting a potential role for C2β in epidermal differentiation. Overexpressing C2β in epidermal cells in vitro induced differentiation markers. To study a role for C2β in tissue, we generated transgenic mice overexpressing C2β in both suprabasal and basal epidermal layers. These mice lacked epidermal abnormalities. Mice deficient in C2β were then generated by targeted gene deletion. C2β knockout mice were viable and fertile and displayed normal epidermal growth, differentiation, barrier function, and wound healing. To exclude compensation by C2α, RNA interference was then used to knock down both C2α and C2β in epidermal cells simultaneously. Induction of differentiation markers was unaffected in the absence of C2α and C2β. These findings indicate that class II PI3Ks are not essential for epidermal differentiation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2206-2206
Author(s):  
Tamara C.A.I. Verbeek ◽  
Susan Arentsen-Peters ◽  
Patricia Garrido Castro ◽  
Sandra Pinhancos ◽  
Kirsten Vrenken ◽  
...  

Abstract MLL-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards epigenetic perturbators such as histone deacetylase (HDAC) inhibitors. Hence, HDACs represent attractive drug targets and a variety of small molecule HDAC inhibitors have been developed and evaluated for the treatment of hematological malignancies. However, most broad-spectrum inhibitors, which simultaneously target the majority of human HDAC isoforms, often induce toxicity, especially in combination with other therapeutic agents. Therefore, selective inhibition of only one or two HDAC isoforms may represent a better alternative, provided that disease-specific dependency on specific HDACs has been identified. We examined the effects of shRNA-mediated knock-down of the class II HDACs (i.e. HDAC4, HDAC5, HDAC6, HDAC7 and HDAC9) in the MLL-rearranged ALL cell lines SEM and ALL-PO. Except for HDAC9, loss of expression (both on the mRNA and protein level) of all HDACs led to strong reductions in viable cells (0.70 to 0.19-fold; p=0.02-0.0016) in both models due to apoptosis, cell cycle arrest, or a combination thereof. Next, we evaluated the in vitro efficacy of a variety of class II HDAC-specific inhibitors on a panel of MLL-rearranged ALL (n=5) using 4-day viability MTT assays. This revealed that the selective HDAC4/5 inhibitor LMK-235 was able to recapitulate the loss-of-function phenotype of HDAC4 and HDAC5. Dose response curves showed complete growth inhibition in MLL-rearranged ALL cell lines (n=5), as well as in primary MLL-rearranged infant ALL patient samples (n=4), with IC 50 values of ~100 nM and 40-100 nM, respectively. Importantly, at these concentrations, LMK-235 hardly affected whole bone marrow samples derived from healthy individuals (n=2), for which IC 50 values were ~1 µM. To further explore the potential of class II HDAC inhibitor-based therapeutic strategies, we performed a combinatorial drug screen to identify compounds that synergize with LMK-235. For this, a compound library (comprising >200 unique agents) was screened in the absence and presence of varying concentrations of LMK235 in the MLL-rearranged cell line models SEM and ALL-PO. This, and subsequent validation experiments in additional cell line models, revealed that Venetoclax (BCL2 inhibitor), Trametinib (MEK/ERK inhibitor), Ponatinib (multi-tyrosine kinase inhibitor) and Omipalisib (a PI3K/mTOR inhibitor) strongly synergized with LMK-235. Average ZIP synergy scores ranged from 10-30, with peak ZIP scores up to 40. Importantly, synergistic effects were consistent over all concentration combinations tested. The addition of 50-100 nM LMK-235 strongly reduced IC 50 values for Omipalisib, Ponatinib and Venetoclax (0.27-fold p=0.003, 0.11-fold p=0.0005, 0.75-fold p=0.0004, respectively) in both models. In preparation to assess the in vivo efficacy of LMK-235 in patient-derived xenograft (PDX) mouse models of MLL-rearranged infant ALL, pharmacokinetic/pharmacodynamic (PK/PD) analysis was performed in immunodeficient NSG mice (n=5). For this, mice were treated with 20 mg/kg of LMK-235, daily administered via intraperitoneal injections for a total of 29 days. While none of the mice showed signs of toxicity or weight loss, LMK-235 plasma levels were stably maintained at concentrations that are highly effective against MLL-rearranged ALL cells in vitro. Taken together, these data demonstrate that various class II HDAC isoforms are targetable vulnerabilities in MLL-rearranged ALL and that pharmaceutical inhibition of HDAC4/5 by LMK-235 represents an attractive therapeutic option. Moreover, high levels of synergy observed between this HDAC inhibitor and various agents belonging to drug classes already reported to be effective against MLL-rearranged ALL, warrants pre-clinical evaluation in vivo. Currently, the assessment of the in vivo efficacy of LMK-235 monotherapy in MLL-rearranged infant ALL PDX models is in progress, after which promising synergistic HDAC inhibitor-based drug combinations will be evaluated. To determine the additional therapeutic value, the efficacy of LMK-235 and promising synergistic combinations will be evaluated in the background of conventional combination chemotherapy, where PDX models will receive a mouse-adapted version of induction therapy currently applied for treatment of MLL-rearranged infant ALL patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Matías Ariel Valiñas ◽  
Arjen ten Have ◽  
Adriana Balbina Andreu

Background: The 4CL/ ACS protein family is well known for its 4-coumarate-CoA ligase (4CL) enzymes but there are many aspects of this family that are still unclear or generally known. Cytosolic class I and class II 4CL enzymes control the biosynthesis of lignin/ suberin and flavonoids, respectively. Many 4CL homologs have broad substrate permissiveness in vitro and have no clear cut function. However, it has been demonstrated unequivocally that a peroxisomal 4CL-like homolog from Arabidopsis efficiently uses p-coumarate for ubiquinone biosynthesis. Another homolog has been shown to act as a fatty acyl-CoA synthetase and yet another as OPDA-CoA ligase. Hence, despite this knowledge, most homologs remain annotated as 4CL-like whereas other researches study the ACS protein family. Results: We set out identify the specific functions of 4CL/ ACS homologs, specifically in order to study the 4CL family in Solanum tuberosum. An in depth phylogenetic analysis was done. Using clustering techniques, functional annotation and taxonomic signals, three major clades were depicted. Clade 1 is composed of class I from monocotyledons, class I from dicotyledons and class II canonical 4CL enzymes subclades. Specificity determining positions and 3D structure analysis shows that clade 2 cytosolic 4CL-like enzymes show a rather different binding cleft and presumably use medium- to long-chain fatty acids. Clade 3 is composed of five subclades, four of which have a broad taxonomic contribution and a similar binding cleft as 4CLs whereas a fifth, specific for dicotyledons shows a significantly different binding pocket. The potato 4CL family comprises four class I (St4CL-I(A-D)) and one class II (St4CL-II) members. Transcript levels of St4CLs and of marker genes of the flavonoid (chalcone synthase, CHS) and suberin (feruloyl-CoA transferase, FHT) pathways were determined by qRT-PCR in flesh and skin from Andean varieties. St4CL-IA was barely detected in the skin of some varieties whereas St4CL-IB did not show a clear pattern. St4CL-IC and St4CL-ID could not be detected. St4CL-II expression pattern was similar to CHS. St4CL-IA and St4CL-IB were induced by wounding as did FHT whereas St4CL-II and CHS expression was repressed. Constitutive and wound-induced expression suggests that St4CL-IA and St4CL-IB isoforms are likely involved in soluble and/ or suberin-bound phenolic compounds while St4CL-II appears to be involved in flavonoid biosynthesis.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1857-1864 ◽  
Author(s):  
Wolfgang Herr ◽  
Elena Ranieri ◽  
Walter Olson ◽  
Hassane Zarour ◽  
Loreto Gesualdo ◽  
...  

Abstract Immunotherapy trials targeting the induction of tumor-reactive T-cell responses in cancer patients appear to hold significant promise. Because nonmutated lineage-specific antigens and mutated idiotypic antigens may be coexpressed by tumor cells, the use of autologous tumor material to promote the broadest range of antitumor T-cell specificities has significant clinical potential in cancer vaccination trials. As a model for vaccination in the cancer setting, we chose to analyze the promotion of T-cell responses against Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell line (B-LCL)–derived antigens in vitro. A series of bulk antigenic formats (freeze–thaw lysate, trifluoroacetic acid lysate, extracted membranes, affinity-purified MHC class I– and class II–presented peptides, acid-eluted peptides) prepared from EBV B-LCLs were tested for their ability to stimulate EBV B-LCL–reactive CD4+ and CD8+ T lymphocytes in vitro when pulsed onto autologous dendritic cells (DCs). DC presentation of freeze–thaw lysate material derived from (either autologous or allogeneic) EBV B-LCLs with an Mr of 10 kd or larger stimulated optimal anti-EBV B-LCL responsiveness from freshly isolated CD4+ and CD8+ peripheral blood T cells. These in vivo “memory” T-cell responses were observed only in EBV-seropositive donors. CD4+ T-cell responses to lysate-pulsed DCs were Th1 type (ie, strong interferon-γ and weak interleukin-5 responses). While CD8+ T-cell responses were also observed in interferon-γ Elispot assays and in cytotoxicity assays, these responses were of low frequency unless the DC stimulators were induced to “mature” after being fed with tumor lysates. Optimal-length, naturally processed, and MHC class I– or class II–presented tumor peptides were comparatively poorly immunogenic in this model system.


Sign in / Sign up

Export Citation Format

Share Document