Microenvironment Influences Expression of TOSO – a Novel NF-Kappa B Target Gene In Chronic Lymphocytic Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 695-695
Author(s):  
Lukas P. Frenzel ◽  
Alexandra Schulz ◽  
Christian P. Pallasch ◽  
Rainer Claus ◽  
Sabine Ponader ◽  
...  

Abstract Abstract 695 We recently identified the transmembrane protein TOSO to be significantly over-expressed in chronic lymphocytic leukemia (CLL) compared to other B-cell lymphomas or healthy B-cells and T-cells. TOSO was initially characterized as inhibitor of Fas-mediator of apoptosis; however, it could be demonstrated to be the receptor for the IgM-specific Fc-domain in immune cells. TOSO is the only Fcμ receptor expressed on B-cells and is solely expressed in the lymphoid compartment. However, little is known on its regulation and the molecular background of over-expression in CLL. We investigated TOSO expression on mRNA and protein level in freshly isolated primary CLL cells (n=10) and healthy B-cells (n=4) after single treatment for 24 hours with a comprehensive panel of different cytokines or stimuli (interleukin (IL)-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, interferon (IFN)-γ, transforming growth factor (TGF)-ß, tumor necrosis factor (TNF)-α, lipopolysaccharide, CpG, CD40-ligand (CD40L) and B-cell receptor (BCR)) being involved in B- and T-cell interplay, by qRT-PCR, western blotting and flow cytometry. Furthermore, we determined the impact of nurse-like cells (NLC) to TOSO expression and co-incubated primary CLL cells for up to 14 days with NLCs. To better understand the intracellular regulation of TOSO, we inhibited BCR and/or CD40L pathways, which were shown by us to be either stimulatory (BCR) or inhibitory (CD40L) in regard to TOSO expression. Since expression might be finally also controlled on epigenetic level, we determined the methylation status of the putative TOSO promoter in 64 CLL samples and 10 healthy B-cells samples. Quantitative DNA methylation analysis was conducted using the EpiTyper application by Sequenom (San Diego, CA, USA). Our experiments reveal novel extra- and intracellular stimuli regulating TOSO expression. We identified CD40L, IL-4 and CpGs to have strong inhibitory effects on TOSO expression (P<0.001) in primary CLL cells and healthy B-cells. In contrast, we identified NLCs (MFIR 15,8 vs. 25,8; P=0.049; n=4) and BCR cross-linking to induce TOSO expression on the cell surface of CLL cells. Based on extracellular stimuli, we were able to hypothesize on shared downstream pathways in order to identify the key regulatory factors and transcription factors controlling TOSO expression. By using a panel of inhibitors in BCR and CD40L downstream signaling, NF-kappa B was shown to have the strongest effect on TOSO expression (P=0,0294). Applying the I-kappa B kinase (IKK) inhibitor Wedelolactone at non-toxic concentrations (10μM), TOSO expression was profoundly suppressed after 24 hours. Regarding epigenetic alterations, our analysis from genome-wide screening experiments in CLL patients compared to healthy B-cells did reveal significant aberrant DNA de-methylation events in the TOSO promoter-associated CpG island (P<0.001). In conclusion, we revealed IL-4, CpG and CD40L as BCR stimulus and NLCs as the key components in regulation of TOSO in the CLL cell microenvironment. Furthermore, over-expression of TOSO in CLL cells compared to normal B-cells could be demonstrated being associated with epigenetic changes at its promoter. We identified TOSO as a novel NF-kappa B regulated target gene. In ongoing studies we elucidate whether NF-kappa B acts directly or in-directly on TOSO expression. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2830-2830
Author(s):  
Stefania Gobessi ◽  
Sara Bennardo ◽  
Pablo G Longo ◽  
Brendan Doe ◽  
Dimitar G Efremov

Abstract Abstract 2830 The protein tyrosine kinase ZAP-70 is an important prognostic factor in chronic lymphocytic leukemia (CLL). Patients that are considered ZAP-70-positive typically express 30–100% of the levels of ZAP-70 in T-cells, whereas in the remaining patients ZAP-70 is either not expressed or is expressed at lower levels. ZAP-70-positive patients have more aggressive disease and shorter survival than patients with low or absent ZAP-70. In vitro experiments with human lymphoma cell lines and primary CLL B-cells have shown that ZAP-70 is involved in B cell receptor (BCR) signaling, indicating that overexpression of ZAP-70 could affect the capacity of the leukemic cells to respond to antigen stimulation. Despite the strong association between ZAP-70 expression and prognosis, it is still not clear whether ZAP-70 directly contributes to the aggressiveness of the disease or is just a marker of more aggressive CLL. To further address this issue, we generated transgenic (tg) mice that express different levels of ZAP-70 in B cells. In these mice expression of the murine ZAP-70 transgene is targeted to the B cell compartment by a VH or a CD19 promoter (VH-ZAP70 and CD19-ZAP70 tg mice, respectively). B cells in CD19-ZAP70 tg mice express the same levels of ZAP-70 as normal murine T cells, whereas the levels of ZAP-70 in B cells of VH-ZAP70 tg mice are approximately 10 times lower. Immunophenotyping analysis of spleen and peritoneal cavity samples from wild type, VH-ZAP70 and CD19-ZAP70 tg mice did not reveal significant differences in the percentage of follicular (FO), marginal zone (MZ) and B1 B cells, indicating that ectopic expression of ZAP-70 does not affect normal B cell development and maturation. In terms of BCR signal transduction, no abnormalities were detected in VH-ZAP70 tg mice, suggesting that low levels of ZAP-70 do not affect BCR signaling. In contrast, B cells from CD19-ZAP70 tg mice showed altered phosphorylation of several molecules downstream of the BCR, such as Syk and BLNK, whereas phosphorylation of Cbl was not affected. To investigate the impact of ZAP-70 expression on leukemia development and progression, we crossed VH-ZAP70 and CD19-ZAP70 tg mice with Eμ-TCL1 tg mice. The latter mice develop leukemias that are considered a mouse model of human CLL. These leukemias are CD5+, express unmutated IGHV genes and stereotyped polyreactive BCRs, but are always ZAP-70-negative. VH-ZAP70/Eμ-TCL1 tg mice (n=11) have been followed for over a year and did not show any differences with respect to their Eμ-TCL1 littermates (n=10). Both groups, starting from the age of 7–8 months, developed leukemias with a similar rate of progression and impact on survival, suggesting that low levels of ZAP-70 do not affect the behavior of the disease. The cohort of CD19-ZAP70/Eμ-TCL1 tg mice was more recently established. These animals are currently 4 months old and still do not show signs of leukemia development. Data from the extended follow-up of these mice will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 788-794 ◽  
Author(s):  
Yean K. Lee ◽  
Nancy D. Bone ◽  
Ann K. Strege ◽  
Tait D. Shanafelt ◽  
Diane F. Jelinek ◽  
...  

AbstractWe recently reported that chronic lymphocytic leukemia (CLL) cells synthesize and release vascular endothelial growth factor (VEGF) under normoxic and hypoxic conditions. CLL B cells also express VEGF membrane receptors (VEGF-R1 and VEGF-R2), suggesting that they use VEGF as a survival factor. To assess the mechanism of apoptosis resistance related to VEGF, we determined the impact of VEGF on CLL B cells, and we studied the impact of epigallocatechin-3-gallate (EGCG), a known receptor tyrosine kinase (RTK) inhibitor, on VEGF receptor status and viability of CLL B cells. VEGF165 significantly increased apoptotic resistance of CLL B cells, and immunoblotting revealed that VEGF-R1 and VEGF-R2 are spontaneously phosphorylated on CLL B cells. EGCG significantly increased apoptosis/cell death in 8 of 10 CLL samples measured by annexin V/propidium iodide (PI) staining. The increase in annexin V/PI staining was accompanied by caspase-3 activation and poly–adenosine diphosphate ribose polymerase (PARP) cleavage at low concentrations of EGCG (3 μg/mL). Moreover, EGCG suppressed the proteins B-cell leukemia/lymphoma-2 protein (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and myeloid cell leukemia-1 (Mcl-1) in CLL B cells. Finally, EGCG (3-25 μg/mL) suppressed VEGF-R1 and VEGF-R2 phosphorylation, albeit incompletely. Thus, these results suggest that VEGF signaling regulates survival signals in CLL cells and that interruption of this autocrine pathway results in caspase activation and subsequent leukemic cell death.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3463-3463
Author(s):  
Christian P Pallasch ◽  
Michaela Patz ◽  
Yoon Jung Park ◽  
Susanne Hagist ◽  
Daniela Eggle ◽  
...  

Abstract Abstract 3463 Poster Board III-351 MicroRNAs play a key role in cellular regulation and if deregulated in the development of neoplastic disorders including chronic lymphocytic leukemia (CLL). Both deregulations of miRNAs as well as the identification of their functional relevant targets and regulatory circuits in CLL pathogenesis are only partly understood and remain to be elucidated. RNAs from primary cells of 50 treatment-naïve CLL patients and peripheral B-cells of 14 healthy donors were applied to miRNA-expression profiling using bead chip technology. The majority of patients presented with Binet stage A disease and showed a favorable risk profile as assessed by clinical and molecular features. Comparing the total number of miRNA being expressed a significantly lower number of miRNA was detected in CLL compared to normal B cells. The predominance of down-regulated miRNAs in CLL cells was accompanied by highly significantly lower total number of miRNAs expressed above the detection threshold in CLL patients (19.8% vs 23.5%; p<10-6). In CLL cells a set of 7 up- and 19 down-regulated miRNAs was identified. We could not identify significant differentially expressed miRNA in cytogenetic defined subgroups, in particular we could not detect significant deregulation of miRNAs in patients harboring del13q14. Moreover, we could not identify significant down-regulation of miR-15 and miR-16 except in one patient harboring a homozygous deletion of chromosome 13q14. However, the previous up-regulation of miR-155, a key regulator of B-cell ontogenesis, appeared to be the most prominent up-regulated miRNA in our cohort. Interestingly, we identified so far unknown down-regulation of a set of miRNAs in CLL such as miR-107, -424, -125a, -126 and -326. Among the miRNAs being downregulated in CLL cells, 6 out of 10 miRNA promoters (miR-126, miR-139, miR-181a2/b2, miR-582, miR-107, miR-449) being examined showed gain of methylation as compared to normal B cell controls. Subsequent target prediction of deregulated miRNAs revealed a highly significant binding prediction at the 3′UTR of the pleomorphic adenoma gene 1 (PLAG1) oncogene. Luciferase reporter assays including site directed mutagenesis of binding sites revealed a significant regulation of PLAG1 by miR-181a, miR-181b, miR-107 and miR-424. While expression of PLAG1 mRNA was not affected, PLAG1 protein expression was shown to be significantly elevated in CLL cells as compared to the levels in healthy donor B cells. In conclusion we demonstrate (I) predominant down-regulation of miRNAs in CLL, (II) identified novel deregulated miRNAs in CLL, (III) unraveled underlying epigenetic changes in loci of deregulated miRNA, (IV) applied in silico target prediction of miRNA interactions for identification of novel pathogenetic factors, and (V) identified specific interaction of deregulated miRNA with PLAG1 3'UTRs resulting in over-expression of this oncogene in CLL. Therefore, PLAG1 over-expression in CLL cells represents a novel oncogenic mechanism in CLL pathogenesis on the background of deregulation in miRNA-mediated control mechanisms. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


2017 ◽  
Vol 39 (2) ◽  
pp. 141-144
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O E Ruzhinska ◽  
I M Skorokhod ◽  
O G Alkhimova

Aim: The genetic mechanisms of resistance to chemotherapy in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-CLL/SLL) are not clear. We aimed to determine the peculiarities of abnormal karyotype formation in bone marrow (BM) cells and peripheral blood (PB) blast transformed B-cells in relapse of B-CLL/SLL. Materials and Methods: Cytogenetic GTG banding technique and molecular cytogenetic in interphase cells (i-FISH) studies of BM cells and PB blast transformed B-lymphocytes were performed in 14 patients (10 males and 4 females) with B-CLL/SLL. Results: The results of karyotyping BM and PB cells revealed the heterogeneity of cytogenetic abnormalities in combined single nosological group of B-CLL/SLL. In PB B-cells, chromosome abnormalities related to a poor prognosis group were registered 2.5 times more often than in BM cells. Additional near tetraploid clones that occurred in 57.1% cases were the peculiar feature of BM cell karyotypes. Chromosomal rearrangements characteristic of the group of adverse cytogenetic prognosis were revealed in all cases from which in 2 cases by karyotyping BM cells, in 6 cases in PB B-cells and in 8 cases by the i-FISH method in BM cells, i.e. their detection frequency was 3 times higher in PB B-cells and 4 times higher when analyzing by i-FISH in BM cells. Conclusions: Mismatch in abnormal karyotypes in BM and PB B-cells by the presence of quantitative and structural chromosomal rearrangements may be indicative of simultaneous and independent processes of abnormal clone formation in the lymph nodes and BM hematopoietic cells. Accumulation the information about previously unidentified chromosomal rearrangements in relapse of the disease may help to understand the ways of resistance formation to chemotherapy.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 5130-5141 ◽  
Author(s):  
Sandra Quijano ◽  
Antonio López ◽  
Ana Rasillo ◽  
Susana Barrena ◽  
Maria Luz Sánchez ◽  
...  

Abstract Limited knowledge exists about the impact of specific genetic abnormalities on the proliferation of neoplastic B cells from chronic lymphoproliferative disorders (B-CLPDs). Here we analyze the impact of cytogenetic abnormalities on the proliferation of neoplastic B cells in 432 B-CLPD patients, grouped according to diagnosis and site of sampling, versus their normal counterparts. Overall, proliferation of neoplastic B cells highly varied among the different B-CLPD subtypes, the greatest numbers of proliferating cells being identified in diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Compared with normal B cells, neoplastic B-CLPD cells showed significantly increased S + G2/M-phase values in mantle cell lymphoma (MCL), B-chronic lymphocytic leukemia (B-CLL), BL, and some DLBCL cases. Conversely, decreased proliferation was observed in follicular lymphoma, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM), and some DLBCL patients; hairy cell leukemia, splenic marginal zone, and MALT-lymphoma patients showed S + G2/M phase values similar to normal mature B lymphocytes from LN. Interestingly, in B-CLL and MCL significantly higher percentages of S + G2/M cells were detected in BM versus PB and in LN versus BM and PB samples, respectively. In turn, presence of 14q32.3 gene rearrangements and DNA aneuploidy, was associated with a higher percentage of S + G2/M-phase cells among LPL/WM and B-CLL cases, respectively.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3316-3325 ◽  
Author(s):  
Andrea Bürkle ◽  
Matthias Niedermeier ◽  
Annette Schmitt-Gräff ◽  
William G. Wierda ◽  
Michael J. Keating ◽  
...  

Abstract CXCL13 is a homeostatic chemokine for lymphocyte homing and positioning within follicles of secondary lymphoid tissues, acting through its cognate receptor, CXCR5. Moreover, the CXCR5-CXCL13 axis plays a unique role in trafficking and homing of B1 cells. Here, we report that chronic lymphocytic leukemia (CLL) B cells express high levels of functional CXCR5. CXCR5 expression levels were similar on CLL B cells and normal CD5+ B cells, and higher compared with normal CD5− B cells, follicular B-helper T cells (TFH cells), or neoplastic B cells from other B-cell neoplasias. Stimulation of CLL cells with CXCL13 induces actin polymerization, CXCR5 endocytosis, chemotaxis, and prolonged activation of p44/42 mitogen-activated protein kinases. Anti-CXCR5 antibodies, pertussis toxin, and wortmannin inhibited chemotaxis to CXCL13, demonstrating the importance of Gi proteins and PI3 kinases for CXCR5 signaling. Moreover, CLL patients had significantly higher CXCL13 serum levels than volunteers, and CXCL13 levels correlated with β2 microglobulin. We detected CXCL13 mRNA expression by nurselike cells, and high levels of CXCL13 protein in supernatants of CLL nurselike cell cultures. By immunohistochemistry, we detected CXCL13+ expression by CD68+ macrophages in situ within CLL lymph nodes. These data suggest that CXCR5 plays a role in CLL cell positioning and cognate interactions between CLL and CXCL13-secreting CD68+ accessory cells in lymphoid tissues.


Sign in / Sign up

Export Citation Format

Share Document