In Vitro Expansion of Human Hematopoietic Cells with Delayed but Sustained Multi-Lineage Repopulating Activity

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1270-1270
Author(s):  
Alice M.S. Cheung ◽  
Stefan Wohrer ◽  
Paul H. Miller ◽  
Suzan Imren ◽  
Shabnam Rostamirad ◽  
...  

Abstract Abstract 1270 In vivo expansion of hematopoietic stem cells (HSCs) involves local interactions with stimuli generated from non-hematopoietic niche environments, but the full spectrum of molecular mechanisms responsible have remained elusive. Initial experiments in mice showed that highly purified HSCs from adult mouse bone marrow are consistently expanded 3–5-fold with full maintenance of their long term (≥6 months), serially transplantable, multi-lineage repopulating ability when cultured for 7 days in serum-free UG26 stromal-cell conditioned medium (CM) supplemented with 100 ng/ml mouse Steel Factor (SF) and 20 ng/ml mouse IL-11. To explore the potential effects of this CM on HSCs in human cord blood, we conducted an initial experiment in which CD34+CD38− cells were cultured for 7 days in UG26 CM supplemented with 100 ng/ml human Flt3-ligand, 100 ng/ml human SF, and 20 ng/ml each of human IL-3, IL-6 and G-CSF. The results of limiting dilution transplants of the cultured cells in intravenously injected NSG mice showed retention of input numbers of cells with equivalent robust 6-month lympho-myeloid repopulating activity. To characterize the initial target cells and determine whether their proliferative responses might be predictive of their self-renewal behavior, we set up single cell cultures with the CD49f+ subset of CD34+CD38−CD45RA−CD90+Rho−cells with the 5 growth factors in the presence or absence of CM. Under both conditions, 7/13 and 4/13 input cells, respectively, died within the first 72 hours in culture. The subsequent rate of proliferation of the survivors was similar with all completing a first division after 96 hours and a second division 24–48 hours later. By day 8, clones of variable sizes were noted (6–1100 and 4–200 cells/clone, respectively). Clones generated under the same conditions were pooled and injected intravenously into 2 NSG mice each. We then looked for the presence of human cells in the mice by analysis of serial bone marrow aspirates starting 3 weeks post-transplant. Human cells were detected in only one of each of the 2 pairs of mice and, interestingly, in both cases, no evidence of human cells was detectable until 3 months post-transplant. In the positive mouse injected with cells generated in the absence of CM, this repopulation was transient, peaking at ∼0.1% of the mouse bone marrow compartment at 4 months post-transplant and undetectable a month later. In contrast, in the positive recipient of cells from the cultures that contained CM, both lymphoid and myeloid human cells reached much higher levels (together making up ∼20% of the mouse bone marrow compartment) which were maintained for another 3 months when the mouse was sacrificed. Transplants of cells obtained at this time from the marrow gave positive repopulation of secondary mice. In a subsequent experiment, in which similar cultures were initiated with CD34+ cord blood cells, evidence of a late continuing effect of the CM was obtained with a net absolute expansion of CD34+CD45RA−CD90+ cell numbers during the interval between 12 and 21 days in vitro. These findings highlight the important potential of as yet unidentified secreted stromal cell factors to stabilize the stem cell state in HSCs stimulated to proliferate in vitro by growth factors that favor their self-renewal. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3675-3675
Author(s):  
Manabu Kusakabe ◽  
Claire Shanna ◽  
Xuehai Wang ◽  
Catherine Jenkins ◽  
Vincenzo Giambra ◽  
...  

Abstract Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of blood cancer that can arise in both children and adults. Numerous studies have explored the effects of putative T-ALL oncogenes in mouse models and have contributed significantly to our understanding of disease pathogenesis. Nonetheless, it is clear there are important differences between mouse and human cells, particularly with respect to cellular transformation, and additional work is therefore needed to generate more accurate models of human disease. We sought here to create human T-ALL in the lab from normal CB progenitors by lentiviral transduction with a combination of known T-ALL oncogenes. Methods: Human CD34+ hematopoietic progenitor cells were isolated from pooled cord blood by magnetic bead/flow cytometric sorting (MACS/FACS). Sorted cells were then transduced by lentiviral vectors encoding a combination of four known T-ALL oncogenes including activated NOTCH1. NOTCH1 virus was marked with a GFP reporter (N1/GFP) while the other three accessory oncogenes were marked with a Cherry reporter (3xOnc/Cherry). Transduced cells were cultured on OP9-DL1 stromal feeders briefly prior to transplantation into NOD/SCID-IL2Rg-null (NSG) mice to assess leukemogenesis, or for longer periods to study their behavior in vitro. Results: Initial transduction efficiencies were typically 3-5% for each virus with 1-2% doubly-transduced N1/GFP+, 3xOnc/Cherry+ cells (hereafter referred as 4xOnc cells). After 28 days culture in vitro, the 4xOnc population reproducibly expanded and outcompeted singly- and non-transduced populations, accounting for more than 70% of cells in mixed cultures. By absolute cell counts, non-transduced cells stopped expanding within the first few weeks; however, 4xOnc cells kept expanding even after 6 weeks of culture. To test leukemogenesis in vivo, CD45+ cells were FACS sorted after 10 days of culture on OP9-DL1 feeders (including doubly-, singly-, and non-transduced populations) and injected intrahepatically into NSG neonates. Engraftment of human cells was followed monthly by flow cytometry of peripheral blood. Engraftment of GFP+ Cherry+ 4xOnc cells was first detected 2 months after transplantation whereas no engraftment of singly- or non-transduced cells was detected. The level of engraftment was below 5% and did not increase substantially even after 6 months following transplantation. At day 203 post-transplant, the primary recipient was sacrificed and 4xOnc cells were recovered from bone marrow, spleen and thymus where the levels of engraftment were approximately 10%. 4xOnc cells from the primary recipient were then serially transplanted into secondary recipients. Engraftment of 4xOnc cells in secondary recipients was observed 5 weeks after transplant. Unlike the primary recipient, however, the percentage of 4xOnc cells in the peripheral blood of secondary recipients gradually increased and these animals developed clinically morbid disease by 20 weeks post-transplant. At the time of necropsy, splenomegaly, lymphadenopathy, and enlarged thymus were observed and the bone marrow contained 80-90% 4xOnc cells. By flow cytometric analyses, 4xOnc cells expressed CD2, CD3, CD7, CD38, and TdT supporting acute T-cell leukemia. Also, TCR gamma clonality assay was performed with genomic DNA from 4xOnc cells from secondary recipients and revealed of 5-7 distinct clonal populations. These in vitro and in vivo findings were observed with multiple experimental replicates and with different pools of cord blood. Conclusion: Our in vitro and in vivo results suggest that NOTCH1, in combination with 3 accessory oncogenes are sufficient to transform normal human blood cells into clonal T-ALL-like malignant cells. Although we cannot exclude the possibility of the spontaneous acquisition of additional co-operating genetic or epigenetic abnormalities, this model provides a significant step forward to reveal the mechanisms involved in human T-ALL pathogenesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 684-684
Author(s):  
David G. Kent ◽  
Brad Dykstra ◽  
Connie J. Eaves

Abstract Hematopoietic stem cells (HSCs) are present in the marrow of adult mice at a frequency of 1/104, as measured by limiting dilution transplantation assays for individual cells that produce lymphoid (B and T) as well as myeloid (GM) cells for at least 4 months in irradiated recipients. HSCs thus defined can be reproducibly isolated in the CD45midlin−Rho−SP fraction of adult mouse bone marrow at a purity of >30%. In mice, mutations in c-kit, the receptor for Steel factor (SF) lead to substantial reductions in the adult HSC population. In vitro, SF has been identified as a potent regulator of HSC self-renewal divisions. High concentrations of SF in combination with IL-11 allow adult HSCs to divide with a net 2–4 fold expansion in HSC numbers after 10 days and low concentrations of SF result in loss of HSC activity. To investigate the cellular mechanisms underlying these different outcomes, we cultured 114 CD45midlin−Rho−SP adult mouse bone marrow cells in single cell cultures containing serum-free medium + 20 ng/ml IL-11 and either 300 or 10 ng/ml of SF. Each culture was then examined every 4–6 hr. The kinetics of division of these cells under both conditions was identical with completion of the 1st division occurring between 22–68 hr. During that time none of the input cells died (<1%). After 10 days of culture, during which time all input cells divided at least 5 times (>50 cells), the HSC content of pooled clones (as measured by in vivo transplantation assays) was found to be >10-fold higher in the clones generated under high vs. low SF conditions (p<0.05). To characterize the types of self-renewal divisions undertaken, 9 doublets generated under the high SF condition were harvested between 4 and 8 hr after they underwent their 1st division and then each of the daughters was injected into a separate irradiated mouse. Analysis of the 18 mice showed that for one of the input cells both daughters were HSCs (evidence of a symmetric self-renewal division) and for 3 more, only one of the 2 daughters was an HSC (evidence of an asymmetric self-renewal division). In contrast no daughter HSCs were identified when 6 doublets produced under the low SF condition were assayed. To determine whether the loss of HSC activity under low SF conditions was a pre- or post-mitotic event, additional in vivo HSC assays were performed on cells harvested from individual wells after 8, 16 and 96 hours of incubation. The results revealed no change in the proportion of wells with either low or high concentrations of SF that contained HSCs after 8 hr of incubation (10/36 positive mice injected with starting single cells and 5/17 (low SF) vs. 6/17 (high SF) positive mice injected with 8-hr single cells, respectively). However, a significant difference (p<0.01) was seen after 96 hr (5/35 vs. 2/43 positive mice, respectively) and, after only 16 hr, before a first mitosis was seen under either condition, a decline in HSCs was apparent under the low SF condition (4/15 vs. 1/15 positive mice injected with cells from the high vs. low SF condition). Together, these studies indicate that HSC exposure to different SF concentrations can rapidly and irreversibly alter the ability of HSCs to execute symmetric as well asymmetric self-renewal divisions in vitro.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 92-92
Author(s):  
Klaus Rehe ◽  
Kerrie Wilson ◽  
Simon Bomken ◽  
Hesta McNeill ◽  
Martin Stanulla ◽  
...  

Abstract Abstract 92 Research on cancer stem cells, cells that self-renew and reconstitute the full phenotype of the original malignancy, has yielded controversial results regarding their frequency and identity for many cancers. The hierarchical stem cell model has been well established in some malignancies such as acute myeloid leukemia and states that only rare, immunophenotypically immature blasts harbor stem cell activity, resembling a normal physiological hierarchy. The opposing stochastic model proposes that stemness in cancer cells is supported by extrinsic stimuli and that a substantial fraction of malignant cells have this potential. Continued optimization of in vivo xenotransplantation modeling recently caused a paradigm shift for some cancers, for example in malignant melanoma where stem cell activity was found in as many as 1 in 4 cells. For acute lymphoblastic leukemia (ALL) we and others previously challenged the hierarchical model by demonstrating that both immature and more mature leukemic blasts contain self-renewal properties (Cancer Cell 2008, 14(1), p47-58). In this study we address the frequency of leukemic stem cells in the bulk leukemia and also, more specifically, in subpopulations of different blast maturity by using unsorted and highly purified flow sorted cell fractions. Primary patient material as well as leukemic blasts harvested from engrafted mouse bone marrow (secondary and tertiary material) were sorted for their CD10, CD20 or CD34 expression followed by orthotopic intrafemoral transplantation into severely immunocompromised NOD/scid IL2Rγnull (NSG) mice. Engraftment of transplanted CD19+CD10low and CD19+CD10high, CD19+CD20low and CD19+CD20high and CD19+CD34low and CD19+CD34high blast populations was monitored by 5 color flow cytometry using material from consecutive bone marrow punctures, final bone marrow harvests and/or single cell suspensions from spleens. Primary ALL samples from 15 high risk (BCR/ABL positive (n=8), BCR/ABL like ALL (n=2), high hyperdiploid/MRD positive (n=2), MRD positive (n=1), MLL/AF4 (n=2)), 3 intermediate risk (high WBC/MRD negative (n=2), age >10 years (n=1)) and 3 standard risk (n=3) patients were included. Cells sorted into CD19+CD10low and CD19+CD10high fractions were transplanted from primary patient material (n=4, HR; n=1, SR) and from secondary samples (n=4, HR; n=1; IR) with cells from one HR patient used at limiting dilutions. As few as 100 sorted cells of either fraction were sufficient to repopulate the leukemia. CD19+CD20high and CD19+CD20 low fractions from primary (n=7, HR; n=1, IR), secondary (n=5, HR; n=1, IR) and tertiary material (n=2, HR; n=1, IR) engrafted NSG mice. Limiting dilutions were performed on secondary (n=4, HR) and tertiary material (n=2, HR). Cell numbers required for engraftment varied between leukemias with as few as 100 cells being sufficient to cause engraftment. Limiting dilution experiments using CD19+CD34high and CD19+CD34low fractions from secondary (n=1, HR) and tertiary (n=1, HR) material yielded engraftment with as few as 10 CD19+CD34high and 100 CD19+CD34low cells. Similarly, unsorted primary (n=11, HR; n=2, IR), secondary (n=2, HR) and tertiary material (n=1, HR) required as few as 10 cells for leukemic reconstitution. Taken together, both unsorted and sorted blasts of all immunophenotypes and transplanted with low numbers were able to reconstitute the complete original phenotype of the patient leukemia. All limiting dilutions were transplanted down to 10 cells per mouse and those mice not engrafted yet are still under observation. Furthermore, the ability to self-renew was demonstrated by serial transplantation. Finally, we compared expression of self-renewal associated genes (BMI1, EZH2, HMGA2, MEIS1, TERT) in CD19+CD34low and CD19+CD34high fractions of 5 HR and 1 SR samples with that in cord blood. Interestingly, expression of these genes was not dependent on the CD34 status of the leukemic cells, whereas HMGA2, MEIS1 and TERT were upregulated in CD34+ cord blood cells. In summary we provide strong evidence for the stochastic cancer stem cell model in B precursor ALL by demonstrating that (i) a broad spectrum of blast immunophenotypes exhibit stem cell characteristics and (ii) that this stemness is highly frequent among ALL cells. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 56 (7) ◽  
pp. 3776-3784 ◽  
Author(s):  
A. H. Nguyen ◽  
S. Kim ◽  
W. J. Maloney ◽  
J. C. Wenke ◽  
Y. Yang

ABSTRACTIn this study, we aimed to establish anin vitrobacterium/bone cell coculture model system and to use this model for dose dependence studies of dual administration of antibiotics and growth factorsin vitro. We examined the effect of single or dual administration of the antibiotic vancomycin (VAN) at 0 to 16 μg/ml and bone morphogenetic protein-2 (BMP-2) at 0 or 100 ng/ml on both methicillin-sensitiveStaphylococcus aureusand mouse bone marrow stromal cells (W-20-17) under both mono- and coculture conditions. Cell metabolic activity, Live/Dead staining, double-stranded DNA (dsDNA) amounts, and alkaline phosphatase activity were measured to assess cell viability, proliferation, and differentiation. An interleukin-6 (IL-6) enzyme-linked immunosorbent assay (ELISA) kit was used to test the bone cell inflammation response in the presence of bacteria. Our results suggest that, when delivered together in coculture, VAN and BMP-2 maintain their primary functions as an antibiotic and a growth factor, respectively. Most interestingly, this dual-delivery type of approach has shown itself to be effective at lower concentrations of VAN than those required for an approach relying strictly on the antibiotic. It may be that BMP-2 enhances cell proliferation and differentiation before the cells become infected. In coculture, a dosage of VAN higher than that used for treatment in monoculture may be necessary to effectively inhibit growth ofStaphylococcus aureus. This could mean that the coculture environment may be limiting the efficacy of VAN, possibly by way of bacterial invasion of the bone cells. This report of a coculture study demonstrates a potential beneficial effect of the coadministration of antibiotics and growth factors compared to treatment with antibiotic alone.


2014 ◽  
Vol 23 (10) ◽  
pp. 1097-1108 ◽  
Author(s):  
Sebastian Raeth ◽  
Benedetto Sacchetti ◽  
Georg Siegel ◽  
Ulrike A. Mau-Holzmann ◽  
Jan Hansmann ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2642-2642
Author(s):  
Stephen B Ting ◽  
Sara Rhost ◽  
Sarah Ghotb

Abstract Despite the relative rarity of haematopoietic stem cells (HSCs) within the blood system, functional heterogeneity is paramount to their ability to sustain lifelong blood production. The quiescent HSC sits at the functional apex possessed with self-renewal properties and the greatest repopulation output. We previously identified the gene, Ap2a2 as an enhancer of HSC function and its protein as a potential cell fate determinant in HSC asymmetric cell divisions (Ting SB et al., Blood 2012). Mechanistically, we hypothesise Ap2a2 induces a state of HSC quiescence. Using the Tet-On histone H2B-GFP mouse model (Foudi et al., Nat Biotech 2009), we have shown Ap2a2 to be highly and differentially expressed in the predominantly, G0 dormant CD150+48-LSK GFPhigh as opposed to the more cycling GFPlow HSC subpopulation. Competitive transplantation of Ap2a2- versus empty vector-transduced H2B-GFP HSCs results in a three-fold increase of the CD150+48-LSK GFPhigh HSC subpopulation. To further confirm the importance of Ap2a2 in haematopoiesis, we have constructed Ap2a2-LacZ reporter and constitutive Ap2a2 knockout (KO) mouse lines. The Ap2a2 LacZ reporter with b-galactosidase flow cytometry staining of bone marrow subpopulations confirmed high endogenous Ap2a2 expression in the CD150+48-LSK long-term (LT-) versus CD150-48-LSK short-term (ST-) repopulating HSCs. Interim analyses of the constitutive Ap2a2 KO mice have revealed two obvious phenotypes: 14% of Ap2a2-null mice termed "non-survivors" are smaller, paler with failure of fetal liver (FL) development and die between E18.5 and weaning, whilst the remaining 11% are adult viable "survivors". However, at E14.5, Ap2a2-null compared to Ap2a2-wild type fetal livers showed less absolute total FL cells but increased CD150+48-LSM FL HSCs. This was quantitatively correlated via limiting dilution assay assessed at 16 weeks post-transplant with a two-fold increase in Ap2a2-null HSC numbers (1 in 78,917 versus 1 in 150,891, p=0.027). This suggests Ap2a2 has a role in FL HSC differentiation and/or fate with potential impairment of symmetrical versus asymmetrical HSC divisions currently being studied. When E14.5 FL cells were competitively transplanted, the Ap2a2-null HSC had impaired donor reconstitution function measured at 16 weeks post-transplant (19.8% versus 48.6%, p=0.015). Ap2a2-null versus wild-type E14.5 FL cells showed equivalent numbers of primary in vitro methylcellulose colony assays but loss of secondary colonies upon re-plating indicative of loss of in-vitro HSC self-renewal. Importantly, although the Ap2a2 adult "survivors" exhibited normal quantities of bone marrow HSC subpopulations, when functionally assessed, Ap2a2-null adult "survivor" HSCs showed loss of in-vivo HSC self-renewal in secondary transplantation assays. To investigate potential cellular mechanisms, we studied the cell cycle state of Ap2a2-null and wild-type E14.5 FL cells and identified that Ap2a2-null "non-survivors" had a relative loss of quiescent G0, specifically in the LT-HSC (and not seen in the ST-HSC) subpopulation throughout all of (E14.5 to E18.5) FL development. In contrast, the LT-HSC subpopulation in FLs of Ap2a2-null "survivors" had an initial loss of G0 at E14.5 but a compensatory increase in LT-HSC G0 by E18.5. Our preliminary data suggests Ap2a2 is a crucial factor for the quiescent LT-HSC subpopulation, and we propose that both during the highly proliferative fetal liver stage of haematopoiesis and adult HSCs under stress that Ap2a2 maintains a critical balance of dormant ("deep-sleeper") HSCs to ensure global HSC function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 447-455 ◽  
Author(s):  
D Zipori ◽  
J Toledo ◽  
K von der Mark

Abstract Study of a series of stromal cell lines from mouse bone marrow (MBA) verified and extended their classification as phenotypically distinct subtypes. Production of extracellular matrix proteins was examined using specific antibodies. Fibronectin and laminin were detected in all of the cell lines tested, yet 14F1.1 adipocytes exhibited particularly prominent extracellular deposition. This cell line and MBA-13.2 cells were positive to both collagen types I and IV, whereas MBA-1 and MBA- 2.1 were stained with anticollagen type I antibodies only. Coculture experiments revealed differences among the lines in their effects on normal myeloid cells and leukemic cell lines. In promoting the in vitro accumulation of myeloid progenitors (CFU-C), 14F1.1 cells surpassed the others. The MBA-2.1 cell line was particularly inhibitory to MPC-11 plasmacytoma and Friend erythroleukemia cells. However, the latter were refractory to other stromal cell lines, whereas MPC-11 cells were inhibited to various degrees by virtually all of the cell lines. Physical separation between the interacting cells reduced the inhibition in some but not all cases, and no inhibitory activity was detected in conditioned media. The MBA-13 stromal cells synergistically promoted the differentiation of dimethylsulfoxide (Me2SO)-induced Friend erythroleukemia. The latter cells themselves, at high concentrations, as well as some of the stromal cell lines and unrelated adherent cells, antagonized the Me2SO effect, revealing possible reversible stages in the Friend cell differentiation pathway.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1881-1890 ◽  
Author(s):  
R Namikawa ◽  
MO Muench ◽  
JE de Vries ◽  
MG Roncarolo

Abstract The effects of a novel cytokine FLK2/FLT3 ligand (FL) on human fetal bone marrow-derived CD34+CD19+ pro-B cells were analyzed in a stromal- cell-independent, serum-deprived culture system. FL, like interleukin-3 (IL-3), synergized with IL-7 in promoting pro-B cell growth, and differentiation of these cells into CD34-CD19+clgM+slgM- pre-B cells, whereas a small proportion of these cells even differentiate into more mature slgM+ B cells. In contrast, KIT ligand (KL) and granulocyte- macrophage colony-stimulating factor (GM-CSF) were ineffective in promoting IL-7-dependent pro-B cell growth and differentiation. Maximal levels of pro-B cell expansion, generally resulting in 15- to 30-fold increases in cellularity, were obtained in cultures supplemented with optimal doses of FL + IL-7 + IL-3. The addition of mouse bone marrow stromal cells further enhanced the proliferation and differentiation of pro-B cells obtained in the presence of these three cytokines. Under these conditions, cultures could be maintained for more than 4 weeks, and in general 40- to 50-fold increases in cell numbers were observed by 3 weeks of culture. The percentages of clgM+ and slgM+ B cells increased 1.5- to 3-fold and 2-fold, respectively, suggesting that stromal cells may provide additional costimulatory signals for human B- cell growth and differentiation that are different from IL-7, IL-3, and FL. Collectively, our results indicate that FL, in contrast to KL, strongly promotes long-term expansion and differentiation of human pro- B cells in the presence of IL-7 or in combination of IL-7 and IL-3, which is a novel property of this hematopoietic growth factor.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2237-2237
Author(s):  
Ravindra Majeti ◽  
Christopher Y. Park ◽  
Irving L. Weissman

Abstract Mouse hematopoiesis is initiated by long-term hematopoietic stem cells (HSC) that differentiate into a series of multipotent progenitors that exhibit progressively diminished self-renewal ability. In human hematopoiesis, populations enriched for HSC have been identified, as have downstream lineage-committed progenitors, but not multipotent progenitors. Previous reports indicate that human HSC are enriched in Lin-CD34+CD38- cord blood and bone marrow, and express CD90. We demonstrate that the Lin-CD34+CD38- fraction of cord blood and bone marrow can be subdivided into three subpopulations: CD90+CD45RA-, CD90-CD45RA-, and CD90-CD45RA+. While, the function of the CD90- subpopulations is unknown, the CD90+CD45RA- subpopulation presumably contains HSC. We report here in vitro and in vivo functional studies of these three subpopulations from normal human cord blood. In vitro, CD90+CD45RA- cells formed all types of myeloid colonies in methylcellulose and were able to replate with 70% efficiency. CD90-CD45RA- cells also formed all types of myeloid colonies, but replated with only 33% efficiency. CD90-CD45RA+ cells failed to form myeloid colonies in methylcellulose. In liquid culture, CD90+CD45RA- cells gave rise to all three subpopulations; CD90-CD45RA- cells gave rise to both CD90- subpopulations, but not CD90+ cells; CD90-CD45RA+ cells gave rise to themselves only. These data establish an in vitro differentiation hierarchy from CD90+CD45RA- to CD90-CD45RA- to CD90-CD45RA+ cells among Lin-CD34+CD38- cord blood. In vivo, xenotransplantation of CD90+CD45RA- cells into NOD/SCID/IL-2R?-null newborn mice resulted in long-term multilineage engraftment with transplantation of as few as 10 purified cells. Secondary transplants from primary engrafted mice also resulted in long-term multilineage engraftment, indicating the presence of self-renewing HSC. Transplantation of CD90-CD45RA- cells also resulted in long-term multilineage engraftment; however, secondary transplants did not reliably result in long-term engraftment, indicating a reduced capacity for self-renewal. Transplantation of CD90-CD45RA+ cells did not result in any detectable human hematopoietic cells, indicating that the function of these cells is undetermined. Finally, transplantation of limiting numbers of CD90-CD45RA- cells (less than 100) resulted in multilineage human engraftment at 4 weeks, that was no longer detectable by 12 weeks. Thus, the CD90-CD45RA- subpopulation is capable of multilineage differentiation while exhibiting limited self-renewal ability. We believe this study represents the first prospective identification of a population of human multipotent progenitors, Lin-CD34+CD38-CD90-CD45RA- cord blood.


Sign in / Sign up

Export Citation Format

Share Document