The Sesquiterpene Oil α-Bisabolol Induces Apoptosis of B-Chronic Lymphocytic Leukemia Primary Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1319-1319
Author(s):  
Massimiliano Bonifacio ◽  
Antonella Rigo ◽  
Angela Bonalumi ◽  
Emanuele Guardalben ◽  
Ilaria Nichele ◽  
...  

Abstract Abstract 1319 We have recently demonstrated that the sesquiterpene oil α-bisabolol is cytotoxic against primary acute leukemia cells ex vivo and in chronic myeloid leukemia cell lines. It enters cells via lipid rafts and activates the mitochondrial-dependent intrinsic pathway of apoptosis, exerting a preferential toxicity against malignant vs normal cells probably due to their higher content in lipid rafts. Here we investigated the in vitro activity of α-bisabolol in primary cells from patients with B-Chronic Lymphocytic Leukemia (B-CLL). Twenty-six patients with newly diagnosed B-CLL gave their informed consent to the study. Cells were collected before any treatment, purified and cultured for 24 hours with serial dilutions of α-bisabolol. Citotoxicity was quantified in flow cytometry by the BD Trucount™ technology to allow comparison between neoplastic and normal residual lymphocytes. B-CLL cells (IC50 42±15 μM) were significantly more sensitive towards α-bisabolol than normal B- (IC50 82±34 μM, p=.005) and T-cells (IC50 120±35 μM, p<.001). Citotoxicity was similar between the IgVH mutated (n=11) and the IgVH unmutated samples (n=7), as well as between the Binet stage A (n=20) and B-C (n=6) patients. To investigate the mechanisms of α-bisabolol-induced toxicity we treated B-CLL cells with 40 μM α-bisabolol for up to 3 hours. We observed a time-dependent increase in fluorescence of cells treated with the membrane-impermeant nucleic acid stain TO-PRO-3, already detactable after 30 minutes. When cells were loaded with the Ca2+ indicator Fluo-4 AM, an increase of Ca2+ influx was revealed already after 15 minutes. These early events indicate that α-bisabolol induces the loss of cellular membrane integrity, so triggering the apoptotic cascade. Then we assessed the mitochondrial transmembrane potential (ΔΨm) with the fluorochrome JC-1 to confirm that a mitochondrial damage is a concurrent mechanism in the apoptotic process induced by α-bisabolol. By flow cytometry we demonstrated that, after 3-hour incubation with 40 μM α-bisabolol, ΔΨm dissipation was already detectable in leukemic cells, while T-lymphocytes, evaluated as internal control in the same samples, stayed vital. To investigate the mitochondrial target of α-bisabolol we examined the function of the mitochondrial permeability transition pore (mPTP). After 5-hour incubation with 40 μM α-bisabolol we loaded cells with the calcein AM dye and added CoCl2 to distinguish between intact and damaged mitochondria, confirming that the function of mPTP was compromised in B-CLL cells but not in normal controls. Finally, to determine whether α-bisabolol affects the oxydative state of treated cells, we evaluated the intracellular concentration of reactive oxygen species (ROS) by measuring the fluorescent signal of CM-H2DCFDA loaded cells. When B-CLL cells were exposed to 40 μM a-bisabolol for 3 hours, they exhibited a clear fluorescence increase, indicating the striking generation of ROS: this was completely abrogated by the addition of N-acetylcysteine, a scavenger of intracellular ROS. Clues about the molecular mechanistics of α-bisabolol have also emerged from in vitro models based on treating cells previously transfected with BH3-only molecules. In this setting, α-bisabolol exposed cells seem to undergo detrimental, non-selective autophagy-like phenomena. Our data indicate that α-bisabolol exerts a level of cytotoxicity against B-CLL cells at concentrations that only partially affect normal B- and T-cells. Moreover, a brief exposure (3–5 hours) to α-bisabolol is sufficient to elicit multiple pro-apoptotic signals independently of the patients' mutational status. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3895-3895
Author(s):  
Yair Herishanu ◽  
Inbal Hazan-Hallevi ◽  
Sigi Kay ◽  
Varda Deutsch ◽  
Aaron Polliack ◽  
...  

Abstract Abstract 3895 Chronic lymphocytic leukemia (CLL) cells depend on their microenvironment for proliferation and survival. Ectonucleotidase CD39 has anti-inflammatory properties as it hydrolyzes pro-inflammatory extra-cellular ATP, generates anti-inflammatory adenosine and also protects regulatory T cells from ATP-induced cell death. In this study we investigated the clinical significance of CD39 expression on CD4+T-cells in 45 patients with CLL as well as its compartmental regulation and explored the possible mechanisms for its induction. Compared to healthy individuals, CD4+CD39+ lymphocytes were increased in the peripheral blood of patients with CLL (4.6%±2.28 vs. 17.3%±12.49, respectively, p=0.004), and correlated with advanced stage of disease (9.72%±5.76, 18.15%±12.03 and 25.90%±16.34, of CD4+ lymphocytes, in patients with Rai stages 0, 1+2 and 3+4, respectively, p=0.019). CD4+CD39+ cells were also higher in patients with CLL who needed therapeutic intervention (untreated; 12.99%±10.63 vs treated; 22.21%±12.88, p=0.01) and in those who were ZAP70+ or had b2-microglobulin levels>3g/L. There were more CD4+CD39+ lymphocytes in the bone marrow compartment (22.25%±16.16) than in the peripheral blood (16.60%±15.84, p=0.009). In-vitro studies showed that CD39 can be induced on CD4+cells by exposure to ATP or indirectly, following B-cell receptor (BCR) engagement (CD4+CD39+ lymphocytes increased by 1.56 fold, in the BCR engaged samples compared to their paired controls; 20.27%±11.3 vs. 13%±9.42, respectively, p=0.0006). Conclusions: Increased CD39 expression on CD4+ T-lymphocytes in CLL associates with an aggressive disease. This may reflect the ability of the leukemic cells to suppress the surrounding immune environment, and contribute to a poorer prognosis. CD39+ may also serve as a future target for the development of novel therapies with immune modulating anti–tumor agents in CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 1063-1070 ◽  
Author(s):  
Mohammad-Reza Rezvany ◽  
Mahmood Jeddi-Tehrani ◽  
Hans Wigzell ◽  
Anders Österborg ◽  
Håkan Mellstedt

Abstract T-cell receptor–B-variable (TCR-BV) gene usage and the CDR3 size distribution pattern were analyzed by reverse transcription–polymerase chain reaction (RT-PCR) in patients with B-cell chronic lymphocytic leukemia (B-CLL) to assess the T-cell repertoire. The use of TCR-BV families in CD4 and CD8 T cells stimulated with autologous activated leukemic cells was compared with that of freshly obtained blood T cells. Overexpression of individual TCR-BV families was found in freshly isolated CD4 and CD8 T cells. Polyclonal, oligoclonal, and monoclonal TCR-CDR3 patterns were seen within such overexpressed native CD4 and CD8 TCR-BV families. In nonoverexpressed TCR-BV families, monoclonal and oligoclonal populations were noted only within the CD8 subset. After in vitro stimulation of T cells with autologous leukemic B cells, analyses of the CDR3 length patterns showed that in expanded TCR-BV populations, polyclonal patterns frequently shifted toward a monoclonal/oligoclonal profile, whereas largely monoclonal patterns in native overexpressed TCR-BV subsets remained monoclonal. Seventy-five percent of CD8 expansions found in freshly obtained CD8 T cells further expanded on in vitro stimulation with autologous leukemic B cells. This suggests a memory status of such cells. In contrast, the unusually high frequency of CD4 T-cell expansions found in freshly isolated peripheral blood cells did not correlate positively to in vitro stimulation as only 1 of 9 expansions continued to expand. Our data suggest that leukemia cell–specific memory CD4 and CD8 T cells are present in vivo of patients with CLL and that several leukemia cell–associated antigens/epitopes are recognized by the patients' immune system, indicating that whole leukemia cells might be of preference for vaccine development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 969-969 ◽  
Author(s):  
Tetsuya Fukuda ◽  
Traci L. Toy ◽  
Laura Z. Rassenti ◽  
Kanti R. Rai ◽  
Thomas J. Kipps

Abstract Patients with chronic lymphocytic leukemia (CLL) cells that express unmutated immunoglobulin (Ig) heavy chain variable region genes (IgVH genes) generally have a more aggressive clinical course than do patients with leukemia cells that express mutated IgVH. The reason(s) accounting for this are not known. Microarray gene expression analyses revealed that CLL cells that express unmutated IgVH could be distinguished from the leukemia cells that express mutated IgVH via the differential expression of a relatively small number of genes, one of which encodes the zeta-associated chain of 70kD (ZAP-70), which generally is expressed by CLL cells that express unmutated IgVH. Although the expression of ZAP-70 is associated with expression of unmutated IgVH in CLL, this association is not absolute. This was the case for a pair of monozygotic twins who both developed CLL at age 57. Although each of the twins had leukemia cells that expressed mutated IgVH, only one of the twins had leukemia cells that lacked expression of ZAP-70 protein and has indolent, non-progressive disease (Blood100: 4609–14, 2002). We performed microarray analysis using Affymetrix HG-U133A array on the isolated leukemia cells of each twin to define the genes that were differentially expressed between the two. In addition to ZAP-70, we found that the CLL cells of the twin with progressive disease also expressed the inducible co-stimulatory molecule (ICOS), a member of the CD28/CTLA-4 family of immune accessory co-stimulatory molecules that ordinarily only is expressed by activated T cells. Expression of ICOS protein by this leukemia B cell population, but not by the CLL B cells population of the other twin, was confirmed using fluorochrome-labeled anti-ICOS mAb and flow cytometry. We examined the CLL B cells from 58 additional patients for expression of ICOS by flow cytometry and found that 16 (28%) also expressed ICOS. We found that expression of ICOS was associated with expression of ZAP-70, as assessed via flow cytometry and immunoblot analyses. Whereas 14 of the 29 ZAP-70+ cases expressed ICOS, only 2 of the 29 ZAP-70-negative cases expressed this immune co-stimulatory molecule. Nevertheless, we found that nearly all of the 56 of the 58 cases expressed B7h, the ligand for ICOS. The two cases that did not express detectable B7h expressed ZAP-70 and were ICOS+. In preliminary studies, we found that treatment of ICOS-negative, ZAP-70+ CLL cells (n = 2) with goat anti-human Ig could induce expression of ICOS, suggesting that, as on T cells, this molecule also might be inducible in some cases of B cell CLL. Culture of ICOS+ CLL cells with an anti-B7h mAb capable of blocking ICOS-B7h interactions significantly enhanced ICOS surface expression, as assess by flow cytometry, suggesting that B7h may down-modulate ICOS through paracrine/autocrine receptor-ligand interactions. Because of this we evaluated for functional expression of ICOS on CLL B cells. We found that ligation of ICOS could induce enhanced signaling via the PI3K/Akt pathway in isolated CLL B cells, resulting in enhanced phosphorylation and activation of Akt. As such, we speculate that the expression of ICOS and its ligand in B cell CLL may enhance leukemia cell survival and/or proliferation, potentially contributing to the more aggressive disease observed in some patients with this disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 588-588
Author(s):  
Davorka Messmer ◽  
Tomoyuki Endo ◽  
Bradley T. Messmer ◽  
Thomas J. Kipps

Abstract CD14+ blood mononuclear cells co-cultured with chronic lymphocytic leukemia (CLL) B cells differentiate into nurselike cells (NLCs) that in turn can support CLL-cell survival in vitro and possibly in vivo. These cells appear similar to lymphoma-associated macrophages, which were identified in secondary lymphoid tissue of patients with follicular lymphoma and appear more prevalent in patients with therapy-resistant disease. To investigate the relationship between NLC and macrophages, we performed studies on macrophages and NLCs that were induced to differentiate from CD14+ blood mononuclear cells in vitro. Consistent with prior studies, we found that NLCs express significantly higher levels of CD68 than macrophages, as assessed via cytoplasmic flow cytometry. However, Affymatrix U113A microarray analysis of gene expression by NLC, macrophages, and monocytes-derived dendritic cells (DCs) from 3 donors revealed major differences in gene expression between DCs versus macrophages or NLCs, but no major differences in gene expression profiles between NLCs and macrophages. Flow cytometric analyses of NLCs and macrophages revealed that these two cell types also shared similar expression levels of CD16, CD32, CD35, CD86, CD58, MHC-II, CD40, and CD54. However, using flow cytometry we found that NLCs (n=9) expressed significantly higher levels than macrophages of the B-cell activating factor belonging to the tumor necrosis factor family (BAFF). Deconvolution microscopy confirmed the differences in BAFF expression and also revealed that NLCs express higher levels of a proliferation-inducing ligand (APRIL) than macrophages. These are two key factors involved in promoting leukemia/lymphoma B cell survival. Moreover, NLCs maintained high-level expression of BAFF even when cultured apart from CLL cells in fresh medium. We investigated whether co-culture of differentiated macrophages with CLL cells could induce the macrophages to express high-levels of BAFF. Although such co-culture induced progressive increase in macrophages-expression of BAFF, the levels of BAFF induced after even 7 days of co-culture were lower than those noted for NLCs. We cultured CD14+ blood monocytes and CLL cells separated across a transwell membrane to determine whether a soluble factor(s) was responsible for the induction of high BAFF levels noted on NLCs. Following several days in culture, the cultured monocytes acquired expression levels of BAFF similar to those detected for NLCs. These studies indicate that monocytes can respond to a soluble factor(s) elaborated by CLL cells to assume properties similar to those of NLCs. Moreover they suggest that NLCs may be a peculiar type of terminally differentiated macrophages-like cells induced by the leukemia-cell population to have properties that promote CLL cell survival. Agents that can block the maturation of monocytes into NLCs or that inhibit the capacity of NLCs to promote leukemia-cell survival may be effective in the treatment of CLL and related lymphoid malignancies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1786-1786 ◽  
Author(s):  
Michael Y. Choi ◽  
Johanna Melo Cardenas ◽  
Desheng Lu ◽  
Jian Yu ◽  
E. Paige Stout ◽  
...  

Abstract Abstract 1786 The Wnt/beta-catenin pathway is highly active in chronic lymphocytic leukemia (CLL) and confers an anti-apoptotic effect in vitro and possibly also in vivo. As such, inhibition of this pathway represents a potential therapeutic target. Here we report preclinical studies using agelastatin A (AgA), a naturally occurring alkaloid extracted from the marine sponges Agelas dendromorpha and Cymbastella sp. We tested AgA using SW480 cells transfected with a beta-catenin dependent reporter gene expression system. Using this assay, we found that AgA is a potent Wnt signaling inhibitor with IC50 of 12nM. AgA also inhibits the expression of reporter genes in HEK293 cells cotransfected with either Wnt1 or mutated (dominant-active) beta-catenin, suggesting that its mechanism of action is independent of the beta-catenin degradation complex. Moreover, real time-PCR results show that Lef1, a classic Wnt/beta-catenin target gene highly expressed in CLL, is down-regulated in primary CLL cells incubated with AgA at nanomolar concentrations. AgA, but not structurally related compounds agelastatin C and agelastatin D, selectively induces apoptosis in CLL B-cells (mean IC50 = 56nM) compared with peripheral blood mononuclear cells from healthy volunteers (mean IC50 = 250nM). Interestingly, AgA induces apoptosis at nanomolar concentrations even in samples from CLL patients who had no clinical response to fludarabine, samples with 17p deletion or TP53 gene mutations, and samples in which p53 deficiency was determined by in vitro chemoresistance and absence of inducible p21, CD95, and DR5 after irradiation (Figure 1). In addition, AgA induces apoptosis on CLL cells that are maintained in co-culture conditions with stromal cells, which typically increases leukemia cell viability. This suggests that AgA is capable of disrupting pro-survival signals derived from the microenvironment, including Wnt mediated activation. In conclusion, AgA has potent activity against CLL cells in vitro. Our studies show that AgA inhibits Wnt/beta-catenin signaling at nanomolar concentrations, induces apoptosis in CLL cells independently of p53, and is able to disrupt pro-survival signaling derived from stromal cell support. AgA warrants further studies and clinical development for the treatment of CLL and potentially other malignancies associated with Wnt/beta-catenin signaling. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1731-1731
Author(s):  
Mercè de Frias ◽  
Daniel Iglesias-Serret ◽  
Ana M Cosialls ◽  
Llorenç Coll-Mulet ◽  
Antonio F Santidrián ◽  
...  

Abstract Abstract 1731 Poster Board I-757 Phosphatidylinositol-3-kinase (PI3K)/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia (CLL) cells. Here, we have analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) in the survival of CLL cells. We studied by cytometric analysis the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with CLL and from healthy donors. Both inhibitors induced apoptosis in CLL cells in a dose-dependent manner. Moreover, B cells from CLL samples were more sensitive to Akt inhibitors than T cells from CLL samples, and B or T cells from healthy donors. Survival factors for CLL cells, such as IL-4 and SDF-1a, were not able to block the apoptosis induced by both Akt inhibitors. We studied the changes induced by Akti-1/2 and A-443654 at mRNA level by performing reverse transcriptase multiplex ligation–dependent probe amplification (RT-MLPA). Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on CLL cells by Western blot. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. These results demonstrate that Akt inhibitors induce apoptosis of CLL cells and might be a new therapeutic option for the treatment of CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2600-2600 ◽  
Author(s):  
Ryan B. Edwards ◽  
David M. Lucas ◽  
Gerard Lozanski ◽  
Amy J. Johnson ◽  
Bao-Ning Su ◽  
...  

Abstract Chronic Lymphocytic Leukemia (CLL) is an incurable disease with limited therapeutic options. The development of drug resistance through multiple pathways, especially in advanced disease, further restricts these options. Thus, new agents with unique mechanisms of action are crucial to make an impact on patient survival. Silvestrol, a rocaglate derivative with an unusual dioxanyloxy unit, was isolated from Aglaia species using bioassay-guided fractionation. Silvestrol exhibited potent in vitro cytotoxic activity against several tumor cell lines. Silvestrol was further evaluated in vivo in the hollow fiber test and in the murine P-388 leukemia model, in which it demonstrated promising anti-tumor activity with no significant weight loss up to 2.5 mg/kg (3.7 μM, assuming equal distribution) (1). Based on these results, we tested silvestrol against tumor cells obtained from CLL patients. Silvestrol exhibited significant antitumor activity with an estimated LC50 (concentration lethal to 50% of cells relative to untreated control) of 10 nM at 72 hours by MTT assay. In contrast, at this same timepoint using normal human peripheral blood mononuclear cells, an LC50 for silvestrol could not be defined even up to 4.0 μM. Under identical conditions, silvestrol was 50 to 100 fold more potent than the active metabolite of fludarabine, commonly used in the treatment of CLL. To determine the minimum exposure time required for silvestrol to have an effect, cells were incubated for various times in 80 nM silvestrol, then washed and resuspended in media with or without drug and incubated for a total of 72 hours. With only a four hour exposure, an average of 56% cytotoxicity was observed relative to untreated cells, and with a 24 hour exposure, results between samples in which the drug was removed and those incubated continuously were indistinguishable. T cell depletion and concomitant immunodeficiency is a serious risk with therapies currently available for CLL. We therefore tested the relative effects of silvestrol on B and T cells. By MTT assay with selected cells and in whole blood incubations followed by flow cytometry, using blood from both CLL patients and healthy volunteers, silvestrol demonstrated significantly more cytotoxicity toward B cells than T cells. Although some variability was observed between patient samples, silvestrol had activity against all samples tested and there was no detectable difference in average potency against cells from patients with a 17p13 deletion (chromosomal site of p53) relative to those without this risk factor. Furthermore, there was no significant difference in silvestrol-mediated cytotoxicity between lymphoblastic cells with a ten-fold overexpression of Bcl-2 relative to control cells. Together, these data demonstrate that silvestrol has efficacy against CLL cells in vitro and in whole blood, has highly unusual B-cell specificity, and is independent of key CLL resistance mechanisms. Our data strongly support further investigation of silvestrol as an antitumor agent in CLL. Studies are underway to determine the precise mechanism of action of this compound in CLL cells.


Sign in / Sign up

Export Citation Format

Share Document