Ezh2 Plays a Critical Role in the Progression of MLL-AF9-Induced Acute Myeloid Leukemia

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 57-57
Author(s):  
Satomi Tanaka ◽  
Goro Sashida ◽  
Satoru Miyagi ◽  
Koutaro Yokote ◽  
Chiaki Nakaseko ◽  
...  

Abstract Abstract 57 The polycomb group proteins function in gene silencing through histone modifications. They have been characterized as a general regulator of stem cells, but also play a critical role in cancer. EZH2 is a catalytic component of the polycomb repressive complex 2 (PRC2) and tri-methylates histone H3 at lysine 27 to transcriptionally repress the target genes. Although EZH2 is over-expressed in various cancers including hematological malignancies, it remains unknown how EZH2 contributes to the initiation and/or progression of acute myeloid leukemia (AML). To understand the role of EZH2 in AML, we transformed granulocyte macrophage progenitors (GMPs) from Cre-ERT;Ezh2+/+ and Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 fusion gene. Then, Ezh2 was deleted by inducing nuclear translocation of Cre by adding tamoxifen to culture. We found that proliferation of Ezh2δ/δ transformed cells was severely compromised upon deletion of Ezh2 (Ezh2δ/δ) in liquid culture. They gave rise to a significantly reduced number of colonies in replating assays. Of note, while Ezh2+/+ cells formed compact colonies composed of immature myeloblasts, Ezh2δ/δ cells formed dispersed colonies composed of differentiated myeloid cells. We next transplanted Cre-ERT;Ezh2+/+ and Cre-ERT;Ezh2flox/flox GMPs transformed by MLL-AF9 into recipient mice. All the recipient mice developed AML by 3 weeks after transplantation. At 3 weeks after transplantation, we depleted Ezh2 by intraperitoneal injection of tamoxifen. Deletion of Ezh2 significantly prolonged the survival of the recipient mice (60 days vs. 76 days, p<0.0001), although all the mice eventually died of leukemia. Nonetheless, as was detected in vitro, Ezh2δ/δ AML cells in BM were apparently differentiated in morphology compared with the control. Ezh2δ/δ AML cells in BM gave rise to 10-fold fewer colonies in methylcellulose medium compared with Ezh2+/+ AML cells, and again showed an obvious tendency of differentiation. These observations imply that Ezh2 is critical for the progression of MLL-AF9 AML and maintains the immature state of AML cells. To elucidate the mechanism how Ezh2 promotes the progression of MLL-AF9-induced AML, we examined the genome-wide distribution of tri-methylation of histone H3 at lysine 27 (H3K27me3) by ChIP-sequencing and microarray-based expression analysis. ChIP-sequencing using Ezh2+/+ and Ezh2δ/δ BM AML cells identified 3525 and 89 genes exhibiting a ≧ 10-fold enrichment in H3K27me3 levels in Ezh2+/+ and Ezh2δ/δ AML cells, respectively, confirming a drastic reduction in the levels of global H3K27me3 in the absence of Ezh2. Microarray analysis using lineage marker (except for Mac1)−Sca-1−c-Kit+FcγRII/IIIhi BM AML cells revealed 252 upregulated and 154 downregulated genes (≧ 2-fold) in Ezh2δ/δ AML cells compared with Ezh2+/+ AML cells. Of interest, the absence of Ezh2 did not affect the transcriptional activation of the major target genes of MLL-AF9, including HoxA9 and Meis1. Because Ezh2 functions as transcriptional repressor, de-repressed genes could be direct targets of Ezh2. Based on these data, we are now engaged in further comprehensive analysis to narrow down the direct target genes of Ezh2 responsible for the progression of AML. Collectively, our findings suggest that Ezh2 is the major enzyme for H3K27me3 in AML and contributes to the progression of AML by regulating transcription a cohort of genes that are supposedly relevant to the self-renewal capacity and perturbed differentiation of AML stem cells. Disclosures: No relevant conflicts of interest to declare.

Haematologica ◽  
2019 ◽  
Vol 105 (9) ◽  
pp. 2273-2285 ◽  
Author(s):  
James Ropa ◽  
Nirmalya Saha ◽  
Hsiangyu Hu ◽  
Luke F. Peterson ◽  
Moshe Talpaz ◽  
...  

Epigenetic regulators play a critical role in normal and malignant hematopoiesis. Deregulation, including epigenetic deregulation, of the HOXA gene cluster drives transformation of about 50% of acute myeloid leukemia. We recently showed that the Histone 3 Lysine 9 methyltransferase SETDB1 negatively regulates the expression of the pro-leukemic genes Hoxa9 and its cofactor Meis1 through deposition of promoter H3K9 trimethylation in MLL-AF9 leukemia cells. Here, we investigated the biological impact of altered SETDB1 expression and changes in H3K9 methylation on acute myeloid leukemia. We demonstrate that SETDB1 expression is correlated to disease status and overall survival in acute myeloid leukemia patients. We recapitulated these findings in mice, where high expression of SETDB1 delayed MLL-AF9 mediated disease progression by promoting differentiation of leukemia cells. We also explored the biological impact of treating normal and malignant hematopoietic cells with an H3K9 methyltransferase inhibitor, UNC0638. While myeloid leukemia cells demonstrate cytotoxicity to UNC0638 treatment, normal bone marrow cells exhibit an expansion of cKit+ hematopoietic stem and progenitor cells. Consistent with these data, we show that bone marrow treated with UNC0638 is more amenable to transformation by MLL-AF9. Next generation sequencing of leukemia cells shows that high expression of SETDB1 induces repressive changes to the promoter epigenome and downregulation of genes linked with acute myeloid leukemia, including Dock1 and the MLL-AF9 target genes Hoxa9, Six1, and others. These data reveal novel targets of SETDB1 in leukemia that point to a role for SETDB1 in negatively regulating pro-leukemic target genes and suppressing acute myeloid leukemia.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 224-224
Author(s):  
Tino Schenk ◽  
Stefanie Göllner ◽  
Weihsu Claire Chen ◽  
Louise Howell ◽  
Liqing Jin ◽  
...  

Abstract Abstract 224 During hematopoiesis, all-trans-retinoic acid (ATRA), a natural derivative of vitamin A, has been shown to induce both myelomonocytic progenitor/stem cell differentiation and self-renewal. Although these opposing effects are likely to be partly due to developmental differences, it has been shown that pro- and anti-differentiation effects of ATRA are mediated by distinct retinoic acid receptor isotypes (RARα and RARγ, respectively). With the exception of acute promyelocytic leukemia (APL), ATRA treatment as a single agent has not been successful in other types of acute myeloid leukemia (AML). We have previously hypothesized that one of the underlying reasons for poor response of non-APL AML to ATRA (pan-RAR agonist) is aberrant expression and/or activities of RAR isotypes favoring RARγ and cell growth versus differentiation. Consistently, we have reported that expression of RARα isoforms, particularly ATRA-inducible RARα2, are down-regulated in AML (Blood. 2008; 111:2374). Epigenetic analysis of patient samples revealed that relative to normal CD33+ cells, the loss of RARα2 in AML is associated with a diminution in levels of histone histone H3 lysine 4 dimethylation (H3K4me2) on the ATRA-responsive RARA2 promoter (a modification associated with transcriptional activation). Interestingly, the H3K4me1/me2 demethylase LSD1/KDM1 (AOF2) is highly expressed in AML patients (www.proteinatlas.org). A number of small molecules that target this enzyme (LSD1i) are in development and, collectively, these data predict that the use of LSD1i will facilitate induction of expression of genes that are required for differentiation of AML cells. In this study we used tranylcypromine (TCP, a monoamine oxidase used as an antidepressant and anxiolytic agent in the clinical treatment of mood and anxiety disorders, respectively), which functions a time-dependent, mechanism-based inhibitor of LSD1. Here we show that TCP unlocked the ATRA-driven therapeutic differentiation response in non-APL AML cell lines including the TEX cell line, which is derived from primitive human cord blood cells immortalized by expression of the TLS-ERG oncogene. TEX cells are >90% CD34+, respond poorly to ATRA and mimic features of primary human AML and leukemia initiating cells (Leukemia. 2005; 19:1794). Consistent with this, ATRA/TCP treatment increased differentiation in primary patient samples. ATRA alone had in general only small effects in primary AML samples and TCP showed minimal activity in most cases. Furthermore, shRNA-mediated knockdown of LSD1 confirmed a critical role for this enzyme in blocking the ATRA response in AML cells. The effects of ATRA/TCP on AML cell maturation were paralleled by enhanced induction of genes associated with myelomonocytic differentiation, including direct ATRA targets. LSD1i treatment did not lead to an increase in genome-wide H3K4me2, but did increase H3K4 dimethylation of myelomonocytic differentiation-associated genes. Importantly, treatment with ATRA/TCP dramatically diminished the clonogenic capacity of AML cells in vitro and engraftment of cells derived from AML patients in vivo, suggesting that ATRA/TCP may also target leukemic stem cells. These data strongly suggest that LSD1 may, at least in part, contribute to AML pathogenesis by inhibiting the normal function of ATRA in myelomonocytic development and pave the way for effective differentiation therapy of AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3333-3333
Author(s):  
Han Zhong Pei ◽  
Xiaomei Zhuang ◽  
Ming Yang ◽  
Yao Guo ◽  
Zhiguang Chang ◽  
...  

Abstract Frequently mutated in Acute myeloid leukemia (AML), FLT3 is considered as one of the favorable targets for treatment. The FLT3 internal tandem duplication (ITD) mutation enhances kinase activity and causes hyperactivation of downstream signal transduction. Several small molecule FLT3 inhibitors have developed, but their clinical efficacy is limited due to generation of drug resistance. In this study, we define a new mechanism of drug resistance toward tyrosine kinase inhibitors (TKIs). Initially, we found a rapid decrease in the protein level of tumor suppressor p53 in FLT3-ITD-positive MV4-11 and MOLM13 cells and peripheral blood mononuclear cells (PBMCs) from FLT3-ITD AML patients upon treatment with TKIs including sorafenib, sunitinib and quizartinib. The decrease is not caused by changes in mRNA expression as revealed by qPCR analyses but rather by accelerated protease degradation because the p53 protein was stabilized by proteasome inhibitor MG132. Furthermore, treatment of cells with RG7388, a potent disruptor of p53 and MDM2 interaction, prevented the TKI-induced p53 loss. Since MDM2 is the most important E3 ligase responsible for ubiquitination of p53, the data suggest that TKIs may lead to the degradation of p53 by promoting ubiquitination. Indeed, ubiquitination assays verified that TKIs promoted K48 poly-ubiquitination of p53. Previous studies have demonstrated that activations of FLT3 downstream signaling components such as ERKs and Akt reduce p53 protein stability through ubiquitination by activating MDM2. It is somewhat unexpected that inhibition of FLT3-ITD and its downstream signaling pathways also resulted in decreased p53 stability due to increased ubiquitination. We treated FLT3-ITD-containing cells with specific ERK, AKT and STAT5 inhibitors. Interestingly, while inhibition of ERKs and AKT had no significant effect on the stability of p53, STAT5 inhibition resulted in a reduced level of p53 accompanied by increased K48 poly-ubiquitination. We further analyzed the interaction of p53 with MDM2 in AML cells by using immunoprecipitation. The results showed that the p53-MDM2 interaction was significantly enhanced after treatment with TKIs and STAT5 inhibitors, which was diminished in the presence of RG7388. Subcellular fractionation revealed the presence of p53 and STAT5 in both nucleus and cytoplasm. Treatment of cells with TKIs resulted in a decreased level of p53 and STAT5 in the nucleus, and immunoprecipitation of nuclear proteins with a p53 antibody revealed a reduced association of p53 with STAT5. Taken together, the data suggest that FLT3 inhibitors inhibited nuclear translocation of STAT5 and reduced its interaction of p53 thereby facilitating p53/MDM2 interaction and subsequent ubiquitination and degradation of p53. This study reveals a novel mechanism by which drug resistance to TKIs may occur and further support the use of MDM2/p53 interaction inhibitors in combination with TKIs for treatment of AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 881-881
Author(s):  
Hee-Don Chae ◽  
Bryan Mitton ◽  
Kathleen Sakamoto

Abstract CREB (cAMP Response Element Binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication Factor C3 (RFC3), a 38 kDa subunit of the RFC complex, is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in DNA replication and repair processes. CREB1 expression was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line, suggesting that RFC3 and CREB1 might be target genes of E2F, a key transcriptional regulator of the G1/S progression. Though there were two potential E2F binding sites in the RFC3 promoter region, chromatin immunoprecipitation assays provided no evidence for E2F1 binding to the RFC3 promoter, whereas E2F1 could directly act on the CREB1 expression. Treatment with the cyclin-dependent kinase (CDK) inhibitor AT7519 decreased expression of CREB1 and RFC3 as well as well-known E2F target genes such as CCNE1, CCNA2 and CCNB1 in KG-1 cells. These results indicate that CREB1 overexpression, a potentially important prognostic marker in leukemia patients, may be associated with dysregulated CDK-E2F activity in leukemia. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in AML cells from patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB knockdown primarily inhibited G1/S cell cycle transition, decreasing expression of RFC3 as well as PCNA loading onto chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading [Chromatin-bound PCNA-positive cells (%), control vs. CREB-knockdown vs. CREB-knockdown with RFC3 overexpression, 8h after release from mitotic arrest: 66.87 +/– 0.90 vs. 24.77 +/– 0.99 vs. 79.17 +/– 0.12, n=3, p< 0.01, mean +/– SEM] caused by CREB knockdown. Taken together, our results suggest that RFC3 may play a role in neoplastic myelopoiesis by promoting the G1/S progression, and its expression is regulated by CREB. These data provide new insight into CREB-driven regulation of the cell cycle in AML cells, and may contribute to leukemogenesis associated with CREB overexpression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4734-4734
Author(s):  
Miaorong She ◽  
Xingqing Niu ◽  
Xilin Chen ◽  
Guo Kunyuan ◽  
Maohua Zhou ◽  
...  

Abstract Acute myeloid leukemia (AML) is initiated and maintained by a rare population of (leukemic stem cells) LSCs. LSCs play the central role in the relapse and refractory of AML and highlight the critical need for the new therapeutic strategies to directly target the LSC population for ultimately curing leukemia which is it is important to identify and study LSCs. However, relatively little is known about the unique molecular mechanisms of survival and self-renewal of LSCs because of very small number of LSCs in bone marrow. In this study, we investigated whether established leukemia cell lines contain LSCs. We showed that leukemia cell line contain leukemic stem-like cells which have been phenotypically restricted within the CD34+CD38− fraction. We demonstrated that CD34+CD38− cells could generate CD34+CD38+ cells in culture medium and had proliferation function. Moreover, CD34+CD38− cells had self-renewal potential both in vitro soft agar colonies formation assay and in vivo NOD/SCID mouse xenotransplant model serial transplantation. Furthermore, CD34+CD38− cells isolated from leukemia cell line were found resistant to conventional chemotherapy and NK cells-mediated cytotoxicity and these were related to up-regulation of ABCG2 and MRP-1 and antiapoptotic proteins of Bcl2. Down-regulation of NKG2D ligand also played a critical role in NK cytotoxicity resistance. Taken together, our studies provide a novel cell model for leukemic stem cells research. Our data also shed light on mechanism of double resistant to resistant to chemotherapy and NK cell immunotherapy, which was helpful for developing novel effective strategies for LSCs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4088-4088
Author(s):  
Bing Xu ◽  
Shiyun Wang ◽  
Feili Chen ◽  
Pengcheng Shi ◽  
Jie Zha ◽  
...  

Abstract Abstract 4088 Backgrounds Acute myeloid leukemia(AML) is a hierarchical disease initiating from a rare population of cells known as leukemia stem cells (LSCs), which are typically enriched in CD34+CD38- cells and presumed responsible for the relapse and refractory of AML. Moreover, current regimens may not effectively discriminate between normal and malignant cells. For this reason, it is important to identify therapies that can specifically target the LSC population without affecting normal cells. Disulfiram (DS) is an anti-alcoholism drug that has recently been indicated to show cytotoxic to multiple cancers including acute myeloid leukemia (AML) and the antineoplastic activity was enhanced in the present of copper (Cu). In the present study, we investigated the effect of DS/Cu on LSCs and further explored its mechanism. Methods and Results CD34+CD38- leukemia stem cell (LSC) enriched subpopulations were sorted from both KG1a cell lines and primary AML bone marrow or peripheral blood mononuclear cells (n=6) by fluoresce-activated cell sorting (FACS) analysis. Using MTT cell proliferation assay and Annexin-V/PI staining assay, We demonstrated that DS/Cu inhibited proliferation and induced apoptosis in CD34+CD38−KG1a cells (IC50= 0.788± 0.451 μM at 24h). With the increasing concentrations of DS (DS=0.05, 0.5, 5, 50μM), the apoptotic proportion increased from 7.2% to 89.5% at 24h. Apoptosis was also observed in CD34+CD38- primary AML cells and the exposure to DS/Cu (DS=0.01, 0.1, 1μM;Cu=0.5μM clearly inhibited the growth of AML-colony-forming units (CFUs) for both CD34+CD38-LSC enriched subpopulations (AML-CFUs decreased from 34.2% to 0% in KG1a cells), but was relatively sparing to normal hematopoietic progenitors. Further more, using flow cytometric analysis, western blot and RT-PCR, we identified that the change in redox status and redox-dependent signaling events play a crucial role in DS/Cu-induced apoptosis. We showed that DS/Cu(DS= 0.625,1.25,2.5,5μM, Cu=1μM) increased reactive oxygen species (ROS) and activated its downstream apoptosis-related SAPK/JNK pathway in association with blockade translocation of Nrf2 and expression of Nrf2-regulated genes in CD34+CD38−KG1a cells. Notably, blockade of ROS by glutathione precursor N-acetylcysteine (NAC)(10mM) strongly diminished DS/Cu mediated lethality and restored Nrf2 nuclear translocation and blocked JNK activation. Additionally, consistent with the ROS accumulation, we also seen that translocation of RelA/p65 and the expression of NF-κb-related gene, associated with abnormal apoptotic response of LSCs, were significantly inhibited by DS/Cu. Conclusion Taken together, we concluded that DS/Cu might selectively eradicate LSCs by induction of oxidatibe stress and blockade the NF-κb pathway and offers a potential therapeutic option in AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5034-5043 ◽  
Author(s):  
Goichi Yoshimoto ◽  
Toshihiro Miyamoto ◽  
Siamak Jabbarzadeh-Tabrizi ◽  
Tadafumi Iino ◽  
Jennifer L. Rocnik ◽  
...  

Abstract Myeloid cell leukemia-1 (MCL-1) is an essential survival factor for hematopoiesis. In humans, hematopoietic stem cells (HSCs) express MCL-1 at the highest level in response to FMS-like tyrosine kinase-3 (FLT3) signaling. We here show that this FLT3-dependent stem cell maintenance system also plays a critical role in survival of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). The CD34+CD38− LSC fraction expresses high levels of FLT3 as well as MCL-1, even compared with normal HSCs. Treatment with FLT3 ligand induced further MCL-1 up-regulation in LSCs in all AML cases tested. Interestingly, the group of samples expressing the highest levels of MCL-1 constituted AML with FLT3–internal tandem duplications (ITD). In FLT3-ITD AML cell lines, cells expressed a high level of MCL-1, and an inhibition of MCL-1 induced their apoptotic cell death. A tyrosine kinase inhibitor suppressed MCL-1 expression, and induced apoptosis that was reversed by the enforced MCL-1 expression. Finally, transduction of FLT3-ITD into HSCs strongly activated MCL-1 expression through its signal transducer and activator of transcription 5 (STAT5)–docking domains. This effect was completely abrogated when STAT5 activation was blocked. Thus, the acquisition of FLT3-ITD ensures LSC survival by up-regulating MCL-1 via constitutive STAT5 activation that is independent of wild-type FLT3 signaling.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5309-5309
Author(s):  
Manal M W Elmasry ◽  
Alaa Elhaddad

Abstract Background: Acute myeloblastic leukemia (AML) can be viewed as newly formed, abnormal hemopoeitic tissue initiated by few leukemic stem cells (LSCs). Recognizing the LSC and identifying their behavior, plays a pivotal role in the approach of a targeted therapy.Colony-stimulating factor 1 (CSF-1), also known as M-CSF, is a protein ligand that acts on the CSF1R promotes mononuclear phagocytes survival, proliferation and differentiation. Aim of the work: Defining the self-renewing [Thy1-, CD34+, CD38-] LICs in AML cases before and after induction chemotherapy as a predictor for relapse and to determine how CSF1R (Fms) and CD34 markers affect the growth and survival of human leukemic cells in the CD38- Thy1- population. Patients and methods: This study was carried out on 30 samples from the peripheral blood of adult patients with de-novo acute myeloid leukemia. The majority of the patients were monocytic AML Samples were sorted into four populations (Fms+CD34-, Fms+CD34+, Fms-CD34+ and Fms-CD34-) according to the surface markers of the cells. Cells were cultured on mouse stromal cells transfected with a plasmid containing human CSF-1. Samples were cultured using Iscove's modified Dulbecc's medium (IMDM).The cultures were assessed for survival of leukemic cells in days. Results: The mean survival in days of the cells was 13.9 before chemotherapy and 14.1 after chemotherapy. The difference in growth was insignificant (p>0.05). The Fms-CD34+ population in all but two samples tested had the longest survival time in culture. Conclusion: Our results suggest that leukemic stem cells may survive chemotherapy mainly due to their quiescence. Human CSF-1 was shown to increase the number of leukemic cells in co-culture with mouse stroma after 5 weeks. A novel leukemic stem cell (Fms-CD34+) has been identified and is the cell responsible for the growth and maintenance of the leukemic bulk. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1229-1229
Author(s):  
Chen Tian ◽  
Guoguang Zheng ◽  
M. James You ◽  
Yizhuo Zhang

Abstract Acute myeloid leukemia (AML) is a group of heterogeneous hematopoietic malignancies sustained by a small population of leukemic stem cells (LSCs) that can resist treatment and act as barriers to cure. Previously, we observed that Hes1 and p21 expression was down-regulated in AML cell lines compared to that of normal bone marrow mononuclear cells. However, the activation status of Hes1-p21 pathway and its regulation in LSCs as well as normal hematopoietic stem cells (HSCs) in AML has not been elucidated. In this study, the Hes1-p21 pathway in LSCs and leukemic progenitors (LPs) was studied in adult CD34+ AML with normal karyotype and no genetic mutations and the upstream miRNA regulators were screened. Our results showed that the level of either Hes1 or p21 was lower in LSCs or LPs than that of HSCs whereas the level of miR-9 was higher in LSCs or LPs than HSCs. An inverse correlation was observed in the expression of Hes1 and miR-9. Furthermore, we validated miR-9 as one of the regulators of Hes1 by reporter gene analysis. Knockdown of miR-9 by lentivirus infection suppressed the proliferation of AML cells by the induction of G0 arrest and apoptosis in vitro. Moreover, knockdown of miR-9 resulted in decreased circulating leukemic cell counts in peripheral blood and bone marrow, attenuated splenomegaly, and prolonged survival in a xenotransplant mouse model. Our results indicate that the miR-9-Hes1-p21 pathway plays an important role in supporting AML cell growth and survival, and that miR-9 has a potential to be a therapeutic target for suppressing AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4322-4322
Author(s):  
Nan Zhang ◽  
Jianchuan Deng ◽  
Fuling Zhou

Abstract Background: N6-methyladenosine (m6A) is the most common post-transcriptional modification of eukaryotic mRNA. Recent evidence suggests that dysregulated m6A-associated proteins and m6A modifications play a pivotal role in the initiation and progression of diseases such as cancer. Here, we identified that IGF2BP3 is specifically overexpressed in acute myeloid leukemia (AML), which constitutes a subtype of this malignancy associated with poor prognosis and high genetic risk. Methods: Bioinformatics analysis of public databases was performed to screen the differentially expressed m6A regulators in AML. Clinical samples were collected to detect the expression of IGF2BP3 in AML by RT-qPCR. The effects of IGF2BP3 on the proliferation, apoptosis and cycle of AML cells were detected by CCK-8 and flow cytometry. RNA-seq was used to identify target genes of IGF2BP3 by integrating analysis with RIP-Seq, iCLIP-Seq and MeRIP-Seq data sets. Results:High expression of IGF2BP3 is closely associated with poor prognosis of AML and is higher in patients with high genetic risk group. IGF2BP3 was the lowest expressed in AML-M3 and the highest expressed in RUNX1 mutant type. IGF2BP3 is required for maintaining AML cell survival in an m6A-dependent manner, and knockdown of IGF2BP3 suppressed dramatically induces apoptosis, reduces proliferation and impaired leukemic capacity AML cells in vitro and in vivo. Mechanistically, IGF2BP3 interacts with RCC2 mRNA and stabilizes the expression of m6A-tagged RNA. Conclusions:We provided compelling evidence to demonstrate that m6A reader IGF2BP3 contributed to tumorigenesis and poor prognosis of AML, which can serve as a target to develop therapeutics for cancer treatment. Disclosures No relevant conflicts of interest to declare. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document