Failure of Erythropoiesis and Megakaryocytopoiesis in RASA3 Mutant Scat Mice

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 680-680
Author(s):  
Lionel Blanc ◽  
Babette Gwynn ◽  
Steven L. Ciciotte ◽  
Luanne L. Peters

Abstract Abstract 680 Scat (severe combined anemia and thrombocytopenia) is a spontaneous, autosomal recessive mutation coisogenic with the BALB/cBy inbred mouse strain. Homozygous scat mice present a cyclic phenotype with alternating episodes of crisis and remission. As its name implies, crisis episodes are characterized by severe anemia and thrombocytopenia, but significant lymphocyte depletion occurs as well. The first crisis episode begins in utero, lasts until postnatal day (P) 9 on average, and is associated with 10–15% mortality. Remarkably, in homozygotes that survive the first crisis, a remission phase occurs wherein the disease phenotype reverts to normal. This remission is transient, however, and is followed by a second crisis episode during which 94% of scat/scat mice die by P30. Previously we showed that the scat phenotype is transferrable via the hematopoietic stem cells and is also recapitulated in scat/scat, Hox11−/− double homozygotes in which a spleen does not develop, indicating that the splenic micro-environment plays little or no role in disease appearance or progression. Positional cloning of scat revealed a missense mutation in Rasa3 encoding a GTPase activating protein (GAP) that negatively regulates Ras function by accelerating GTP hydrolysis and converting Ras to the inactive GDP bound form. We further showed that Rasa3 is a conserved gene critical to vertebrate erythropoiesis via morpholino knockdowns in zebrafish which resulted in profound anemia. Here we report data that shed further light on RASA3 function during hematopoiesis. Overall, the data indicate that defects in RASA3 profoundly and negatively impact erythropoiesis and megakaryocytopoieis through, at least in part, a Ras-mediated mechanism. FACS analyses of scat spleen and bone marrow erythroid populations reveal a severe block in erythropoiesis during crisis periods. In the spleen, despite an initial increase in size due to expansion of Ter-119+ cells, there is ultimately a loss of compensatory erythropoiesis resulting in a return to normal cellularity and a striking loss of hemoglobinized cells as the crisis phenotype deepens. In addition, the bone marrow shows loss of Ter-119+ cells and overall cell depletion during crisis. Megakaryocyte numbers are increased in scat crisis BM and spleen. By transmission electron microscopy, scat crisis megakaryocytes display features characteristic of a significant developmental delay: a disorganized demarcation membrane system with no platelet forming areas and few granules with hypersegmented nuclei and excess rough endoplasmic reticulum. In addition to the severe anemia and thrombocytopenia, a significant lymphopenia occurs in scat crisis mice. However, the scat phenotype is not lymphocyte mediated, as the scat phenotype is completely recapitulated in mice doubly homozygous for scat and the immunodeficient mutations, scid and Rag1tm1Mom, in which B- and T-lymphocytes are completely depleted. Together these results suggest that lymphopenia is a secondary phenomenon in scat, and the severe anemia and thrombocytopenia aspect of the phenotype neither follows from nor is dependent upon loss of lymphocytes. Despite the delay observed in erythroid differentiation, some mature red cells are produced although ∼50% of these are reticulocytes. By confocal microscopy, we show that RASA3 protein localizes to the plasma membrane as well as internal membrane compartments in wild type reticulocytes, where it partially colocalizes with CD71. Western blot analyses of reticulocytes after Percoll gradient purification show that RASA3 is lost during the maturation step, both in vivo and in vitro. Interestingly, in scat, RASA3 is present in reticulocytes, but appears to be mislocalized, the protein being found in the cytosol. Preparation of ghosts from wild type and scat reticulocytes confirms that RASA3 is not attached to the membrane in scat animals during crisis. In pull-down assays active GTP-bound Ras is increased in scat crisis reticulocytes when compared to wild type, suggesting that scat is a RASA3 loss of function mutation due to its mislocalization and demonstrating a critical role for the RASA3-Ras axis during mammalian erythropoiesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3469-3469
Author(s):  
Pratibha Singh ◽  
Seiji Fukuda ◽  
Janardhan Sampath ◽  
Louis M. Pelus

Abstract Interaction of CXCR4 expressed on hematopoietic stem and progenitor cells (HSPC) with bone-marrow stromal SDF-1 is believed to play a central role in retention or mobilization of HSPC. Recently, a mobilization regimen of G-CSF was shown to decrease osteoblast number resulting in reduced levels of bone-marrow SDF-1, however the detailed mechanism leading to this reduction is currently unknown. It is unlikely that G-CSF directly regulates osteoblast SDF-1 production since osteoblasts do not express G-CSF receptor. Proteolytic cleavage of SDF-1 by peptidase CD26 in the bone-marrow may be an alternative mechanism responsible for reduction of SDF-1 level. Although CD26 can cleave SDF-1 in vitro, direct evidence of SDF-1 cleavage by CD26 in vivo during G-CSF induced HSPC mobilization has not been demonstrated. We previously demonstrated that neutrophils are required for G-CSF induced HSPC mobilization and that CD26 expression on neutrophils, rather than HSPC, is critical for mobilization. To more fully understand the role of CD26 in altering SDF-1 protein/activity during G-CSF induced HSPC mobilization, we quantitated bone-marrow SDF-1 levels in CD26−/− and wild-type CD26+/+ mice by ELISA during G-CSF administration. A standard 4 day G-CSF mobilization regimen (100 μg/kg bid, sc × 4 days) decreased bone-marrow total SDF-1 from 4.55±0.3 to 0.52±0.06 ng/femur in wild-type CD26+/+ mice (8.7-fold) and from 4.51±0.3 to 0.53±0.05 ng/femur (8.5-fold) in CD26−/− mice. However, despite an equivalent decrease in SDF-1, total CFU mobilization and the absolute number of mobilized SKL cells were decreased (3.1 and 2.0 fold lower, respectively) in CD26−/− mice compared to wild-type CD26+/+ controls. These results suggest that the decrease in total SDF-1 level in marrow seen following G-CSF treatment is independent of CD26. Cytological examination of bone-marrow smears showed that the reduction in SDF-1 levels in bone-marrow of both wild-type CD26+/+ and CD26−/− mice following G-CSF administration correlated with an increase in total absolute bone-marrow neutrophil cell number, suggesting a role for neutrophils in modulation of SDF-1 protein. To determine if neutrophils affect osteoblast SDF-1 production, bone marrow Gr-1+ neutrophils from wild-type CD26+/+ and CD26−/− mice were purified using anti-Ly6G magnetic beads and co-cultured with MC3T3-E1 preosteoblasts in vitro. Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased pre-osteoblast SDF-1 production by similar amounts (15.4-fold vs 14.8-fold respectively), while Gr-1 neg cells from both wild-type CD26+/+ or CD26−/− were without effect on SDF-1 levels. Similarly, Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased SDF-1 produced by MC3T3-E1-derived osteoblasts from 1.85±0.3 to 0.52±0.06 ng/ml (3.5 fold) and 0.56±0.07 ng/ml (3.3 fold) respectively, with Gr-1neg cells having no effect. Gr-1+ neutrophils either from wild-type or CD26−/− mice, but not Gr-1neg cells, significantly induced apoptosis of MC3T3-E1 cells as measured by Annexin-V staining (70.5%±10.2 vs 71.2%±12.5 for wild-type CD26+/+ and CD26−/− neutrophils respectively) and significantly inhibited osteoblast activity (20-fold vs 20.6-fold for CD26+/+ and CD26−/− neutrophils respectively) as measured by osteocalcin expression. Furthermore, irrespective of G-CSF treatment, an inverse correlation between absolute neutrophil number and SDF-1 protein levels was observed, suggesting that G-CSF induces neutrophil expansion but does not directly affect SDF-1 production. Collectively, these results provide additional support for the critical role of neutrophils in G-CSF induced mobilization and strongly suggested that neutrophils directly regulate bone-marrow SDF-1 levels independent of CD26 activity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4831-4831
Author(s):  
Stefanie Bugl ◽  
Stefan Wirths ◽  
R Müller Martin ◽  
Märklin Melanie ◽  
Tina Wiesner ◽  
...  

Abstract Abstract 4831 Introduction: Previously it was demonstrated that lymphopoiesis is rapidly established after transplantation of wild type stem cells into lymphopenic NODSCIDcγ−/− mice. These data were interpreted as evidence for an “empty” preformed lymphopoietic niche being replenished by lymphoid progenitors. We hypothesized that antibody-induced neutropenia might influence early post transplant fate decision to myeloid rather than lymphoid differentiation resulting in delayed lymphoid reconstitution. Materials and Methods: 25,000 flow sorted CD45.2-expressing wild type Lin-/Sca1+/c-Kit+ (LSK) cells from C57BL/6 mice were transplanted into sublethally irradiated B-/T-/NK-cell deficient NODSCIDcγ−/− mice (CD45.1). Three groups of n = 7 mice received anti-Gr1 or anti-1A8 i.p. every 48 h to induce continuous antibody-mediated neutropenia vs. PBS as control. Blood was harvested at regular intervals to monitor the engraftment. After 16, 22, and 34 days, animals were sacrificed and underwent blood and bone marrow analysis. Results: Hematopoietic regeneration started with the emergence of donor-derived monocytes in all groups as well as neutrophils in the control group as early as 9 days after transplantation. On day 14, B cells were to be detected for the first time, followed by T lymphocytes approximately 20 days after transplantation. Besides the fact that neutrophils were undetectable in the antibody treated groups, the peripheral blood revealed no significant changes between the neutropenic mice and the control group at any point of time. At the bone marrow level, an increase of LSK and granulocyte-macrophage progenitors (GMPs) at the expense of megakaryocyte erythrocyte progenitor cells (MEPs) was found in neutropenic mice. Common lymphoid progenitors (CLPs), however, were not significantly different. Conclusions: The engraftment of wild type donor cells after hematopoietic stem cell transplantation into NODSCIDcγ−/− mice started with the production of monocytes and neutrophils. B-lymphocytes were detectable by day 14 after transplantation. The production of T-cells started around day 20. Continuous antibody-mediated neutropenia did not significantly delay lymphoid regeneration. Although the marrow of neutropenic mice displayed increased proliferation of granulocyte progenitors, CLPs were unchanged. We conclude that the detection of donor-derived lymphocytes in the host peripheral blood is a relatively early event after LSK transplantation. Moreover, antibody induced neutropenia is not sufficient to induce sustainable changes in early hematopoietic fate decisions on the bone marrow level. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1608-1608
Author(s):  
Lily Huang ◽  
Huiyu Yao ◽  
Yue Ma

Abstract Myeloproliferative neoplasms (MPNs) are a phenotypically diverse group of pre-leukemic diseases characterized by overproduction of one or more of the myeloid cell lineages. Gain-of -function mutations in the Janus tyrosine kinase 2 (JAK2) are major determinants in MPNs, These include the V617F mutation and mutations in exon 12. Interestingly, MPN phenotype in patients with exon 12 mutations is distinct from that of patients with the V617F mutation. Mechanisms underlying the phenotypic differences are not well understood. We performed an unbiased screen for residues essential for JAK2 auto-inhibition, and identified a panel of novel gain-of-function mutations. Interestingly, three of them with similar kinase activities in vitro elicited distinctive hematopoietic abnormalities in mice. Specifically, JAK2(K539I) results primarily in erythrocytosis, JAK2(N622I) predominantly granulocytosis, and JAK2(V617F) in both. These phenotypes are consistent with clinical data showing that patients with the V617F mutation exhibit erythrocytosis and granulocytosis, whereas those with mutations in exon 12 (where K539 resides) exhibit erythrocytosis only. To determine the mechanisms underlying the phenotypic differences by different JAK2 mutants, we characterized hematopoietic progenitors and precursor subsets in these mice for their proliferation, apoptosis and differentiation. Quantification of the hematopoietic stem and progenitor population showed an increased percentage of granulocyte-monocyte progenitors (GMP) and skewing of differentiation towards the granulocytic lineage in JAK2(V617F) and JAK2(N622I) mice compared to JAK2(K539I) or wild-type JAK2 mice. Because no difference was observed in the proliferation or apoptosis of bone marrow progenitors from JAK2 mutant mice, differentiation of the common myeloid progenitors (CMP) was likely skewed towards GMP by JAK2(V617F) and JAK2(N622I). Consistent with this hypothesis, similar results were observed in colony forming assays from sorted CMP populations. In the spleen, a decrease in GMP apoptosis and an increase in apoptosis of the megakaryocyte-erythrocyte progenitors (MEP) also contributed to the skewing towards the granulocytic lineage in JAK2(N622I) mice. Similar to MPN patients, mice expressing JAK2 mutants exhibited splenomegaly. We found that JAK2 mutants caused redistribution of hematopoietic stem and progenitors from the bone marrow to spleen. As a result, more differentiated precursors were expanded in the spleens of JAK2 mutants mice compared to mice expressing wild-type JAK2. Consistent with their phenotypes, the percentage of Annexin V+7AAD-erythroblasts in JAK2(K539I) and JAK2(V617F) mice was significantly less than in JAK2(N622I) or wild-type JAK2 mice. On the other hand, both proliferation and apoptosis contribute to the differential degrees of granulocytosis among mice expressing different JAK2 mutants. In line with the different effects elicited by different JAK2 mutants in progenitor and precursor cells, signal transduction pathways were differentially activated downstream of different JAK2 mutants. In summary, our results showed that JAK2 mutants differentially skew differentiation in early stem and progenitor compartments, and also regulate apoptosis and proliferation of distinct precursor subsets to cause erythrocytosis or granulocytosis in mice. These results provide the mechanistic basis for the phenotypic diversity observed in MPNs with different JAK2 mutants. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 259-259
Author(s):  
Miguel Gallardo ◽  
Hun Ju Lee ◽  
Carlos E. Bueso-Ramos ◽  
Xiaorui Zhang ◽  
Laura R. Pageon ◽  
...  

Abstract Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA and DNA binding protein that regulates critical pathways controlling differentiation and proliferation programs. While alterations in hnRNP K expression are associated with neoplastic malignancies, we currently do not understand how changes in hnRNP K expression contribute to tumor phenotypes in vivo. Previous biochemical and cell line studies demonstrate that hnRNP K transcriptionally regulates p53-dependent activities, suggesting it functions as a potential tumor suppressor. However, hnRNP K has also been shown to positively regulate c-Myc expression, indicating it may behave as an oncogene. The HNRNP K gene maps to a region of chromosome 9 (9q21.32), which is lost in a subset of patients with acute myeloid leukemia (AML). RNA expression analyses of patient samples with AML that harbor 9q21.32 deletions revealed a significant reduction in HNRNP K expression compared to wild type control samples, supporting the notion that hnRNP K acts as a tumor suppressor (Figure 1A). However, patients with AML who do not harbor a 9q21.32 deletion displayed a significant increase in hnRNP K expression (Figure 1A). Thus, to examine the association between altered hnRNP K expression and disease status in patients with AML, we performed reverse phase protein array (RPPA) analysis on CD34+ bone marrow cells from 415 de novo AML patient as well as healthy donor controls. Interestingly, we observed a significant correlation between elevated hnRNP K levels and poor outcomes, which supports the idea that hnRNP K has oncogenic potential (Figure 1A). Together, these observations indicate that any change in hnRNP K expression may contribute to the etiology of AML and supports the idea that hnRNP K may potentially act as either a haploinsufficient tumor suppressor or oncogene in AML. To directly interrogate these possibilities in vivo, we generated mouse models that either harbor a deletion of one hnRNP K allele (hnRNP K+/-) or overexpressed hnRNP K (hnRNP KTg) in the hematological compartment. Western blot analyses demonstrated that hnRNP K haploinsufficiency results in a significant reduction in hnRNP K expression while tissue-specific activation of hnRNP K resulted in overexpression of hnRNP K. Similar to our observation in AML patients, either hnRNP K haploinsufficiency or overexpression resulted in similar phenotypes in vitro and in vivo. Lin-CD117+ hematopoietic stem cells (HSCs) from hnRNP K+/- and hnRNP KTg mice had significant increases in differentiation and proliferation potential as determined by colony formation assays. In these experiments, we observed a significant increase in the number of total colonies and number of cells per colony in both hnRNP K+/- and hnRNP KTg HSCs as compared to wild type HSCs (Figure 1B). In vivo analyses of the hnRNP K+/- and hnRNP KTg mice revealed a significant increase in myeloid hyperplasia in the peripheral blood and bone marrow, increased tumor formation, genomic instability, and decreased survival compared to wild type mice (Figure 1C). Interestingly, both increased and decreased hnRNP K expression resulted in alterations in similar pathways that regulate differentiation and proliferations potential (e.g.; p53 and c-Myc pathways and alterations in C/EBP expression). Together, these clinical and animal model studies illustrate that either over-expression or under-expression of hnRNP K lead to strikingly similar phenotypes that directly impact the etiology of AML. Furthermore, these data not only implicate that hnRNP K behaves as both a tumor suppressor and oncogene, but also suggest that it functions as a master toggle that dictates the proliferation and differentiation potential of HSCs. We are currently using Whole Transcriptome Shotgun Sequencing (RNA-Seq) and ChIP-Seq to evaluate the mechanisms by which increased and decreased hnRNP K expression impact hematologic malignancies. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1581-1581
Author(s):  
Sebastian J. Saur ◽  
Melanie Märklin ◽  
Alexandra Poljak ◽  
Manuela Ganser ◽  
David E. James ◽  
...  

Abstract Megakaryopoiesis is controlled by a variety of hematopoietic growth factors in order to maintain a physiological level of circulating platelets. Thrombopoietin (TPO) is the main regulator of megakaryopoiesis modulating megakaryocyte differentiation, promoting endomitosis and proplatelet formation and as such supports the self-renewal and survival of hematopoietic stem cells. To allow proper proliferation and differentiation of different hematopoetic lineages, TPO signal transduction must be tightly regulated. Several mechanisms negatively modulating hematopoiesis and differentiation of the megakaryocytic lineage have previously been identified. Among those are suppressors cytokine signaling, protein phosphatases as well as a multitude of negative regulatory signaling pathways. However, one of the most effective mechanisms to permanently disable activated signaling proteins is by targeted degradation via lysosomes or proteasomes. In this study, we investigated the mechanisms that regulate TPO-mediated MPL degradation in primary mouse cells. Previous studies have identified CBL as an E3 ligase responsible for the ubiquitination of MPL in cell lines. In order to determine the potential role of c-CBL in murine thrombopoiesis, we used Cre/loxP technology to specifically delete c-CBL in the megakaryocytic lineage. Mice expressing two floxed c-CBL alleles were crossed to mice expressing Cre recombinase under the control of the platelet factor 4 (PF4) promoter. This yielded progeny with the desired genotype of c-CBLfl/fl PF4-Cre (CBL ko) after two generations of breeding. The desired cohort exhibited a quantitative absence of c-CBL in megakaryocytes and platelets as assessed by western blotting compared with wild type C57/BL6 mice. The expression of CBL in other hematopoietic cells such as B cells, T cells, neutrophils, monocytes and dendritic cells remained unaffected in this conditional ko strain. The experimental cohort showed significantly higher numbers of megakaryocytes in the bone marrow and of platelets in the peripheral blood as compared to wild type mice (1.2 mio vs. 1.8 mio cells/µl, p<0.0001). In addition, the platelets from the mutant mouse strain were of significantly smaller size (43 vs. 38 fL, p=0.0022). To evaluate the role of c-CBL in mature megakaryocytes, total bone marrow was collected from 12 wk old CBL ko mice and grown in TPO-containing culture medium for 72 h. Megakaryocytes derived from the bone marrow of wild type mice served as controls. Mature megakaryocytes were eventually isolated on a BSA-density gradient. Subsequent Western Blot analysis revealed a significant reduction of MPL ubiquitination in the CBL ko mice as compared to wild type mice, thereby identifying c-CBL as a critical negative regulator of megakaryopoesis. Taken together, we have successfully ablated c-CBL specifically from the megakaryocyte lineage and could demonstrate that this has profound effects on platelet counts and platelet size. In addition, we were able to show that c-CBL ablation leads to reduced ubiquitination of MPL and a consecutively longer half life of this protein culminating in substantially increased megakaryopoiesis in the c-CBL ko cohort. In summary, these data enhance our understanding of the regulation of TPO signaling and the physiological role of CBL in the megakaryocytic lineage. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 776-776
Author(s):  
Luanne L. Peters ◽  
Steven L. Ciciotte ◽  
E. Ricky Chan ◽  
Babette Gwynn ◽  
Amy J. Lambert ◽  
...  

Abstract Abstract 776 The spontaneous recessive mutation scat (severe combined anemia and thrombocytopenia) arose on the inbred BALB/cBy (BALB) mouse strain. The phenotype of scat is cyclic. All homozygotes are severely anemic and thrombocytopenic at birth. Leukocytes are also significantly depleted (Table). Approximately 13% die during this first “crisis” episode that lasts, on average, until the 9th postnatal day. Remarkably, a spontaneous remission ensues in those surviving the neonatal crisis period wherein all peripheral blood values revert to normal. A second crisis follows, and 94% of the mice die by 30 days of age. The recessive ENU (N-ethyl-N-nitrosourea)-induced mutation, hlb381, on the C57BL/6J (B6) background, is characterized by severe thrombocytopenia and leukopenia with mild anemia. Unlike scat, hlb381 is not cyclical. The phenotype is present at birth and persists throughout life. Despite the phenotypic differences, scat and hlb381 interact genetically; double heterozygotes show non-cyclical severe thrombocytopenia and leukopenia, and mild anemia (Table). This interaction implies that the scat and hlb381 genetic defects affect the same gene or distinct genes within the same pathway. Both scat and hlb381 mapped to overlapping intervals on mouse chromosome 8. Sequence analysis of genes within the interval identified Rasa3 (GAPIII, GAP1IP4BP) as a strong candidate gene for both scat and hlb381. In scat, Rasa3 carries a missense mutation near the N-terminus (G125V, exon 5) and, in hlb381, a missense mutation near the C-terminus (H794L, exon 23). RASA3 is a GTPase activating protein (GAP) that negatively regulates p21 Ras function by accelerating GTP hydrolysis and converting Ras to the inactive GDP bound form. Analysis in Panther and SIFT predicts that both residues are highly conserved and substitutions are likely to be deleterious. Rasa3 is widely expressed throughout embryonic and fetal development in mice, and is ubiquitously expressed in zebrafish 24 hours post fertilization (hpf). RASA3 protein is detected in erythroid tissues and platelets in the adult mouse. Analysis of scat spleen and bone marrow erythrocyte populations by FACS (dual staining for Ter119 and CD71 followed by forward scatter of the Ter119 high population) reveals a severe block in erythropoiesis during crisis periods. The proerythroblast, EryA (basophilic erythroblasts), and EryB (late basophilic and polychromatophilic erythroblasts) populations are significantly increased in frequency vs. wild type, and the EryC (orthochromatophilic erythroblasts and reticulocytes) population is markedly decreased. Annexin V staining revealed no significant differences in any of these populations. Notably, a similar delay in erythroid maturation, albeit much milder, is also seen in hlb381. In pull-down assays using the Ras-binding domain of Raf1 to affinity purify active GTP-bound Ras followed by detection by western blotting with pan-Ras antibody, active GTP-bound Ras is deficient in scat crisis red cells but recovers during remission. Finally, injection of two independent splice-blocking morpholinos designed to disrupt exon 5 and induce disruption of rasa3 mRNA processing resulted in a major decrease in the number of hemoglobinized cells when stained with o-dianisidine at 48 and 72 hpf in zebrafish. Over 90% of morphants showed no hemoglobinized cells at all, or vastly reduced numbers (<20) of hemoglobinized cells. We conclude that RASA3 plays a critical role in vertebrate erythropoiesis. Differences in the scat and hlb381 phenotypes likely result from allele-specific interactions mediated by the different genetic backgrounds (B6 vs. BALB) or domain-specific functions of the RASA3 protein.Hematological ValuesWBC × 103/μLRBC × 106/μLHb g/dLHct %Reticulocytes %Platelets × 103/μLSpleen weight (% body weight)BALB-scat homozygotes in crisis and remissionBALB-nl5.28.713.241.911.79550.74 scat crisis2.4*2.8*4.2*14.5*51.6*145*2.69*scat remission4.17.912.541.022.95611.22BALB,B6-hlb381 homozygotes and scat/hlb381 double heterozygotesBALB,B6-nl5.19.113.744.08.612190.28 hlb381/hlb3812.1*9.113.343.512.0*24*0.50*hlb381/scat2.4*8.4*12.3*39.9*12.1*14*NAAll mice 18-30 days old. All values X ± SD; nl, normal littermates, NA, no data available.*P < 0.05 vs. normal littermates Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1174-1174
Author(s):  
Darlene Monlish ◽  
Angela Herman ◽  
Molly Romine ◽  
Sima Bhatt ◽  
Laura G. Schuettpelz

Abstract Toll like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that shape the innate immune system by identifying foreign pathogen-associated molecular patterns (PAMPS) and host-derived damage associated patterns (DAMPS). TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells (HSPCs). Of clinical significance, both lymphoproliferative and myelodysplastic syndromes have been linked to aberrant TLR signaling (Schuettpelz, et al., Front Immunol 2013; Varney, et al., Exp Hematol 2015). Despite extensive studies focused on the influence of TLRs through committed effector cell populations, more recent evidence suggests that these PRRs may elicit immune regulation from the more primitive level of hematopoietic stem cells (HSCs). As TLR2 is expressed on HSCs, in the present study, we sought to elucidate the effect of TLR2 signaling on HSCs, and determine the cell-autonomous versus non-autonomous effects of this signaling. To this end, we utilized the synthetic TLR2 agonist, PAM3CSK4, to assess the effects of augmented TLR2 signaling on HSC mobilization, function, cycling, and differentiation. In previous studies, we found that TLR2 is not required for HSC function (Schuettpelz et al., Leukemia 2014); however, in the present study, treatment of wild-type mice with PAM3CSK4 led to HSC expansion in both the bone marrow and spleen, and a reduction in bone marrow megakaryocyte-erythroid progenitors (MEPs). Further, we observed increased HSC cycling and loss of function in competitive bone marrow transplantation assays in response to TLR2 agonist exposure. Treatment of chimeric animals (Tlr2-/- + Tlr2+/+ bone marrow transplanted into Tlr2+/+ or Tlr2-/- recipients) showed that these effects are largely cell non-autonomous, with a minor contribution from cell-autonomous TLR2 signaling. Analysis of serum, bone marrow, and spleen samples by cytokine expression arrays revealed an increase in G-CSF (serum) and TNFα (bone marrow) following TLR2 agonist treatment in wild-type mice. To further characterize the influence of these cytokines, respective receptor knockout models were employed. Inhibition of G-CSF enhanced HSC bone marrow expansion in response to PAM3CSK4, but partially rescued the expansion of spleen HSPCs. Likewise, loss of TNFa partially mitigated the expansion of spleen HSPCs in response to PAM3CSK4, and abrogated the PAM3CSK4-induced spleen HSC cycling. Further, we observed that loss of TNFa rescued the PAM3CSK4-mediated loss of bone marrow MEPs. Taken together, these data suggest that TLR2 signaling affects HSCs via both cell cell-autonomous and non-autonomous cues, with G-CSF and TNFa contributing to TLR2 agonist-mediated effects on HSC cycling, mobilization, and function. Ongoing studies aim to determine the particular cell types that are crucial for mediating the effects of TLR2 signaling on HSCs and elucidate the role of this pathway on HSCs in myelodysplastic syndrome (MDS) pathogenesis and other hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 875-875
Author(s):  
Puneet Agarwal ◽  
Hui Li ◽  
Kwangmin Choi ◽  
Robert S. Welner ◽  
Jianbo He ◽  
...  

Abstract Mesenchymal cells within the bone marrow (BM) microenvironment play an important role in regulation of hematopoietic stem cell (HSC) fate. However, the effects of leukemia development on distribution and function of mesenchymal cell subpopulations are not well understood. Here we used the SCL-tTA-BCR-ABL transgenic CML mouse model to examine how CML development affected murine BM mesenchymal subpopulations within a recently delineated skeletal stem cell (SSC) hierarchy, and evaluate how mesenchymal subpopulations affected HSC and leukemia stem cell (LSC) growth. We observed a significant increase in bone-forming "Thy" and stroma-forming "6C3" progenitor subsets in CML compared to normal BM. CML Thy and 6C3 progenitors demonstrated increased proliferation and CFU-F potential. In addition, CML Thy cells exhibiting increased osteogenic potential whereas CML 6C3 cells showed increased adipogenic potential compared to their normal counterparts. CML LSC and normal HSC were cocultured with Thy and 6C3 cells, purified from CML and normal mice for 3 days and transplanted into irradiated normal recipients to evaluate long-term engraftment. Normal HSC engraftment was enhanced by coculture with normal Thy and 6C3 cells but not by their CML counterparts. On the other hand, LSC engraftment was enhanced by CML 6C3 cells compared to normal 6C3 cells, but not by CML Thy cells compared to normal Thy cells. These results indicate that CML stromal progenitors demonstrate enhanced support of LSC and reduced support of normal HSC. Q-PCR analysis showed that expression of major hematopoietic regulatory molecules, including CXCL12, G-CSF, SCF, IL-1, IL-6, and IGF-1, was significantly reduced in CML 6C3 and Thy progenitors.RNA-Seq analysis demonstrated that expression of TNFaand NF-kbrelated gene sets was significantly increased in CML compared with normal 6C3 cells. Ligand-receptor interactome analysis, based on differential gene expression in LSC and normal HSC, and CML and normal 6C3 cells, revealed upregulation of the chemokines CXCL1 and CXCL5 in CML 6C3 cells, and of their cognate receptor CXCR2 in LSC. We have previously shown that TNFalevels are increased in CML compared to normal BM (Zhang et al., 2012). Here we found that treatment of WT mice with TNFα led to expansion of 6C3 cells and increased CXCL1 expression on 6C3 cells. In contrast, treatment of CML mice with anti-TNFα antibodies led to reduction in 6C3 cell numbers and reduced CXCL1 expression in 6C3 cells. These results support a critical role for TNFα signaling in expansion and increased CXCL1 expression by stromal progenitors in CML BM. We evaluated the role of paracrine CXCL1-CXCR2 signaling in growth and TKI resistance of LSC. Treatment with CXCL1 and CXCL5 resulted in expansion of LSC and leukemic progenitors respectively, and this effect was blocked by the CXCR2 inhibitor SB225002. Treatment with SB225002 significantly reduced proliferation of LSC cocultured with CML 6C3 cells. SB225002 administration to mice engrafted with CML cells resulted in significant reduction in peripheral blood WBC counts, neutrophil percentage, and leukemic short-term HSC (STHSC) and granulocyte-macrophage progenitors (GMP) in the BM. The combination of SB225002 and the TKI Nilotinib (50mg/kg) resulted in significantly greater reduction in peripheral blood WBC and neutrophils, and in BM LSC compared to Nilotinib or SB225002 alone.SB225002 treatment also significantly reduced proliferation and enhanced apoptosis of human CML CD34+CD38- cells cocultured with human CML BM mesenchymal stromal cells, and that the combination of SB225002 and Nilotinib significantly enhanced apoptosis and inhibited proliferation of CML CD34+CD38- cells compared to Nilotinib alone. We conclude that increased TNFα signaling results in expansion of stromal progenitors in CML BM, which differentially support LSC compared to normal HSC. TNFα-signaling leads to overexpression of CXCL1 by stromal progenitors, which interacts with CXCR2 overexpressed on LSC to enhance their growth. Inhibition of CXCR2 signaling reduces LSC proliferation and survival, and enhances LSC elimination in combination with TKI. These observations support further exploration of targeting of CXCL1-CXCR2 interactions as a novel and effective strategy to target BM microenvironment-protected TKI-resistant LSC. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document