A 41-Gene Signature Predicts Complete Response (CR) to Bortezomib-Thalidomide-Dexamethasone (VTD) As Induction Therapy Prior to Autologous Stem-Cell Transplantation (ASCT) in Multiple Myeloma (MM)

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 805-805
Author(s):  
Carolina Terragna ◽  
Daniel Remondini ◽  
Sandra Durante ◽  
Marina Martello ◽  
Francesca Patriarca ◽  
...  

Abstract Abstract 805FN2 Background. Achievement of CR is generally associated with improved clinical outcomes for patients (pts) with MM and represents a primary endpoint of current clinical trials. The GIMEMA Italian Myeloma Network designed a phase 3 study to demonstrate that the triplet VTD regimen was superior over a doublet such as thalidomide-dexamethasone (TD) as induction therapy prior to double ASCT for newly diagnosed MM. On an intention-to-treat basis, the rate of complete or near complete response (CR/nCR) was 31% for the 236 pts on VTD induction therapy, while it was 11% (p<0.0001) for the 238 pts on TD induction therapy. Since enhanced rates of CR/nCR affected by VTD incorporated into ASCT resulted in extended progression-free survival, prediction of CR by pharmacogenomic tools is likely to be an important goal to prospectively select those pts who are more likely to benefit from a given therapy. Methods. For this purpose, in a molecular substudy to the main clinical study we assessed the ability of gene expression profile (GEP) to predict attainment of CR/nCR in 122 pts enrolled in the VTD arm of the study. Their characteristics at baseline, including cytogenetic abnormalities, were comparable with those of the whole population of 236 pts. Highly purified CD138+ plasma cells were obtained at diagnosis from each of these pts and were profiled for gene expression using the Affymetrix U133 Plus2.0 platform. In order to build a low-dimensional signature with optimal performance, genomic data were analyzed with an original algorithm that exploits quadratic discriminant analysis with a bottom-up approach that builds N-gene signatures starting from two-dimensional signatures. Gene models were applied to test datasets to predict achievement of either CR/nCR or less than nCR, and classification performances were validated by a leave-one-out crossvalidation procedure. Results. Thirty four pts out of the 122 (28%) who were included in the present analysis achieved a CR/nCR, while the remaining 88 patients failed this objective. The molecular approach described above allowed to identify several gene signatures among which we choose a 163-gene signature that provided a predictive capability of 79% sensitivity, 87% specificity, 71% positive predictive value (PPV) and 92% negative predictive value (NPV). These expression values were used in an unsupervised hierarchical clustering to stratify the population of 122 profilated pts into 3 well defined subgroups. Seventy nine pts were included in subgroup A, while the remaining 43 pts were included in either subgroup B (n=22) or subgroup C (n=21). Notably, 19 out the 34 CR/nCR pts (56%) clustered in subgroup B, whereas the remaining 15 pts were randomly distributed within subgroup A. Analysis of demographic and disease characteristics of the pts belonging to the 3 major subgroups, revealed that in subgroup B the frequencies of pts carrying del(13q) (78%) or del(17p) (22%) or with an IgA isotype (54%) were significantly higher in comparison with the corresponding values found in subgroup A (47%, 4%, and 10%, respectively) and subgroup C (38%, 10%, and 5%, respectively). In order to obtain a more feasible set of genes predictive of CR/nCR, several smaller signatures originating from the 163-gene signature were further analyzed by means of the same algorithm described above. The best predictive capability was obtained with a 41-gene signature that provided 88% sensitivity, 97% specificity, 91% PPV and 95% NPV. A GeneGo ® network analysis of genes included in the signatures showed that the most relevant network nodes included tumour suppressor genes (FBXW7 and MAD), genes involved in inflammatory response (TREM1 and TLR4) and genes involved in B cell development (IKZF1, IL10 and NFAM1). Genes included in the signatures do not gather in specific chromosomes, thus confirming the absence of bias on selection of signatures genes, potentially due to prevalence of MM typical chromosomal aberrations. Conclusions. GEP analysis of a subgroup of pts who received VTD induction therapy allowed to provide a 41-gene signature that was able to predict attainment of CR/nCR and, conversely, failure to achieve at least nCR in 91% and 95% of cases, respectively. These favorable results might represent a first step towards the possible application of a tailored therapy based on the single patient's genetic background. Supported by: Fondazione Del Monte di Bologna e Ravenna, Ateneo RFO grants (M.C.) BolognAIL. Disclosures: Bringhen: Celgene: Honoraria; Janssen-Cilag: Honoraria; Novartis: Honoraria; Merck Sharp & Dhome: Membership on an entity's Board of Directors or advisory committees. Offidani:Janssen: Honoraria; Celgene: Honoraria.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jun Liu ◽  
Jianjun Lu ◽  
Zhanzhong Ma ◽  
Wenli Li

Background. Hepatocellular carcinoma (HCC) is a common cancer with an extremely high mortality rate. Therefore, there is an urgent need in screening key biomarkers of HCC to predict the prognosis and develop more individual treatments. Recently, AATF is reported to be an important factor contributing to HCC. Methods. We aimed to establish a gene signature to predict overall survival of HCC patients. Firstly, we examined the expression level of AATF in the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and the International Union of Cancer Genome (ICGC) databases. Genes coexpressed with AATF were identified in the TCGA dataset by the Poisson correlation coefficient and used to establish a gene signature for survival prediction. The prognostic significance of this gene signature was then validated in the ICGC dataset and used to build a combined prognostic model for clinical practice. Results. Gene expression data and clinical information of 2521 HCC patients were downloaded from three public databases. AATF expression in HCC tissue was higher than that in matched normal liver tissues. 644 genes coexpressed with AATF were identified by the Poisson correlation coefficient and used to establish a three-gene signature (KIF20A, UCK2, and SLC41A3) by the univariate and multivariate least absolute shrinkage and selection operator Cox regression analyses. This three-gene signature was then used to build a combined nomogram for clinical practice. Conclusion. This integrated nomogram based on the three-gene signature can predict overall survival for HCC patients well. The three-gene signature may be a potential therapeutic target in HCC.


2017 ◽  
Author(s):  
Andrew Dhawan ◽  
Alessandro Barberis ◽  
Wei-Chen Cheng ◽  
Enric Domingo ◽  
Catharine West ◽  
...  

AbstractWith the increase in next generation sequencing generating large amounts of genomic data, gene expression signatures are becoming critically important tools, poised to make a large impact on the diagnosis, management and prognosis for a number of diseases. Increasingly, it is becoming necessary to determine whether a gene expression signature may apply to a dataset, but no standard quality control methodology exists. In this work, we introduce the first protocol, implemented in an R package sigQC, enabling a streamlined methodological and standardised approach for the quality control validation of gene signatures on independent data sets. The emphasis in this work is in showing the critical quality control steps involved in the generation of a clinically and biologically useful, transportable gene signature, including ensuring sufficient expression, variability, and autocorrelation of a signature. We demonstrate the application of the protocol in this work, showing how the outputs created from sigQC may be used for the evaluation of gene signatures on large-scale gene expression data in cancer.


2018 ◽  
pp. 1-17 ◽  
Author(s):  
Alexey Stupnikov ◽  
Paul G. O’Reilly ◽  
Caitriona E. McInerney ◽  
Aideen C. Roddy ◽  
Philip D. Dunne ◽  
...  

Purpose Gene expression profiling can uncover biologic mechanisms underlying disease and is important in drug development. RNA sequencing (RNA-seq) is routinely used to assess gene expression, but costs remain high. Sample multiplexing reduces RNA-seq costs; however, multiplexed samples have lower cDNA sequencing depth, which can hinder accurate differential gene expression detection. The impact of sequencing depth alteration on RNA-seq–based downstream analyses such as gene expression connectivity mapping is not known, where this method is used to identify potential therapeutic compounds for repurposing. Methods In this study, published RNA-seq profiles from patients with brain tumor (glioma) were assembled into two disease progression gene signature contrasts for astrocytoma. Available treatments for glioma have limited effectiveness, rendering this a disease of poor clinical outcome. Gene signatures were subsampled to simulate sequencing alterations and analyzed in connectivity mapping to investigate target compound robustness. Results Data loss to gene signatures led to the loss, gain, and consistent identification of significant connections. The most accurate gene signature contrast with consistent patient gene expression profiles was more resilient to data loss and identified robust target compounds. Target compounds lost included candidate compounds of potential clinical utility in glioma (eg, suramin, dasatinib). Lost connections may have been linked to low-abundance genes in the gene signature that closely characterized the disease phenotype. Consistently identified connections may have been related to highly expressed abundant genes that were ever-present in gene signatures, despite data reductions. Potential noise surrounding findings included false-positive connections that were gained as a result of gene signature modification with data loss. Conclusion Findings highlight the necessity for gene signature accuracy for connectivity mapping, which should improve the clinical utility of future target compound discoveries.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 544-544
Author(s):  
H. R. Bonnefoi ◽  
A. Potti ◽  
M. Piccart ◽  
L. Mauriac ◽  
M. Tubiana-Hulin ◽  
...  

544 Background: We previously described gene expression signatures that predict sensitivity to common chemotherapeutic agents and published promising results of their applicability in patients (Nature Med 2006). The goal of this study was to confirm their validity in a larger series of breast cancer patients with hormone-receptor negative (HR negative) since these tumours are more sensitive to chemotherapy. We used pathological complete response as a surrogate for chemosensitivity. We analyzed samples from a subset of patients included in a recently completed large neoadjuvant phase III trial. The trial compares a non-taxane regimen (fluorouracil + epirubicin + cyclophosphamide × 6; FEC arm) with a taxane regimen (docetaxel × 3 then epirubicin + docetaxel × 3; T->ET arm). Methods: RNA prepared from frozen samples obtained at diagnosis were hybridized to Affymetrix arrays. In vitro single agent signatures generated using a metagene approach were combined to obtain a FEC and a T->ET regimen-specific signatures. Predictions were blinded to patient outcome. With both signatures we calculated the receiver operating curve, its AUC, and the cut-point with maximal Youden index- accuracy, positive predictive value (PPV), sensitivity (Sens), negative predictive value (NPV) and specificity (Spec). Results: Samples from 124 patients (55 pCR) with HR negative tumours underwent a successful gene-expression array: 65 patients were treated in FEC arm and 59 patients in T->ET arm. The results are summarized below. Conclusions: We have validated the approach of using regimen-specific genomic signatures developed in vitro, in the context of a multicenter randomized trial. These results support the activation of a prospective trial comparing the conventional random choice of chemotherapy versus a specific array based approach. [Table: see text] [Table: see text]


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi157-vi157
Author(s):  
Cymon Kersch ◽  
Cheryl Claunch ◽  
Prakash Ambady ◽  
Elmar Bucher ◽  
Daniel Schwartz ◽  
...  

Abstract OBJECTIVE Personalized treatment strategies in Glioblastoma multiforme (GBM) has been hampered by intra-tumoral heterogeneity. The goals of this study were to (1) determine the impact of intra-tumoral heterogeneity on established predictive and prognostic transcriptional signatures in human GBM, and (2) develop methods to mitigate the impact of tissue heterogeneity on transcriptomic-based patient stratification. METHODS We analyzed transcriptional profiles of GBM histological structures from the open-source Ivy Glioblastoma Atlas Project. To generate these data, infiltrative tumor, leading edge, cellular tumor [CT], perinecrotic zones, pseudopalisading cells, hyperplastic blood vessels and microvascular proliferation were microdissected from 34 newly diagnosed GBM and underwent RNA sequencing. Data from The Cancer Genome Atlas were used for validation. Principle component analysis, network analysis and gene set enrichment analysis were used to probe gene expression patterns. RESULTS Distinct biological networks were enriched in each tumor histological structure. Classification of patients into GBM molecular subtypes varied based on the structure assessed, with many patients classified as every subtype depending on the structure analyzed. Using only CT to classify subtypes, we identified biologically unique patterns suggesting that proneural and mesenchymal tumors may be more sensitive to chemoradiotherapy and immunotherapy, respectively. Survival outcome predicted by an established multigene panel was confounded by histologic structure. Utilizing CT transcriptomics we developed a novel survival prediction gene signature that identified the highest-risk GBM patients in both CT and bulk tissue gene expression profiles. CONCLUSIONS Histologic structures contribute to intra-tumoral heterogeneity in GBM. Using mixed-structure biopsy samples could incorrectly subtype tumors and produce invalid patient stratification. Limiting transcriptomic analysis to the CT allowed us to develop a new survival prediction gene signature that appears accurate even in mixed tissue samples. The biological patterns uncovered in the subtypes and risk-stratified groups have important implications for guiding the development of precision medicine in GBM.


2019 ◽  
Author(s):  
Yuumi Okuzono ◽  
Takashi Hoshino

AbstractRecent rise of microarray and next-generation sequencing in genome-related fields has simplified obtaining gene expression data at whole gene level, and biological interpretation of gene signatures related to life phenomena and diseases has become very important. However, the conventional method is numerical comparison of gene signature, pathway, and gene ontology (GO) overlap and distribution bias, and it is not possible to compare the specificity and importance of genes contained in gene signatures as humans do.This study proposes the gene signature vector (GsVec), a unique method for interpreting gene signatures that clarifies the semantic relationship between gene signatures by incorporating a method of distributed document representation from natural language processing (NLP). In proposed algorithm, a gene-topic vector is created by multiplying the feature vector based on the gene’s distributed representation by the probability of the gene signature topic and the low frequency of occurrence of the corresponding gene in all gene signatures. These vectors are concatenated for genes included in each gene signature to create a signature vector. The degrees of similarity between signature vectors are obtained from the cosine distances, and the levels of relevance between gene signatures are quantified.Using the above algorithm, GsVec learned approximately 5,000 types of canonical pathway and GO biological process gene signatures published in the Molecular Signatures Database (MSigDB). Then, validation of the pathway database BioCarta with known biological significance and validation using actual gene expression data (differentially expressed genes) were performed, and both were able to obtain biologically valid results. In addition, the results compared with the pathway enrichment analysis in Fisher’s exact test used in the conventional method resulted in equivalent or more biologically valid signatures. Furthermore, although NLP is generally developed in Python, GsVec can execute the entire process in only the R language, the main language of bioinformatics.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251272
Author(s):  
Yasuo Takashima ◽  
Atsushi Kawaguchi ◽  
Junya Fukai ◽  
Yasuo Iwadate ◽  
Koji Kajiwara ◽  
...  

Dysregulation of cell morphology and cell-cell interaction results in cancer cell growth, migration, invasion, and metastasis. Besides, a balance between the extracellular matrix (ECM) and matrix metalloprotease (MMP) is required for cancer cell morphology and angiogenesis. Here, we determined gene signatures associated with the morphology and microenvironment of primary central nervous system lymphoma (PCNSL) to enable prognosis prediction. Next-generation sequencing (NGS) on 31 PCNSL samples revealed gene signatures as follows: ACTA2, ACTR10, CAPG, CORO1C, KRT17, and PALLD in cytoskeleton, CDH5, CLSTN1, ITGA10, ITGAX, ITGB7, ITGA8, FAT4, ITGAE, CDH10, ITGAM, ITGB6, and CDH18 in adhesion, COL8A2, FBN1, LAMB3, and LAMA2 in ECM, ADAM22, ADAM28, MMP11, and MMP24 in MMP. Prognosis prediction formulas with the gene expression values and the Cox regression model clearly divided survival curves of the subgroups in each status. Furthermore, collagen genes contributed to gene network formation in glasso, suggesting that the ECM balance controls the PCNSL microenvironment. Finally, the comprehensive balance of morphology and microenvironment enabled prognosis prediction by a combinatorial expression of 8 representative genes, including KRT17, CDH10, CDH18, COL8A2, ADAM22, ADAM28, MMP11, and MMP24. Besides, these genes could also diagnose PCNSL cell types with MTX resistances in vitro. These results would not only facilitate the understanding of biology of PCNSL but also consider targeting pathways for anti-cancer treatment in personalized precision medicine in PCNSL.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2124 ◽  
Author(s):  
Iman Rezaeian ◽  
Eliseos J. Mucaki ◽  
Katherina Baranova ◽  
Huy Q. Pham ◽  
Dimo Angelov ◽  
...  

Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This machine learning method, which distinguishes sensitivity vs. resistance in breast cancer cell lines and validates predictions in patients, was also used to derive gene signatures of other HT  (tamoxifen) and CT agents (methotrexate, epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene signatures exhibited the best performance, however the other agents also predicted survival with acceptable accuracies. A support vector machine (SVM) model of paclitaxel response containing the ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, TUBB4B genes was 78.6% accurate in 84 patients treated with both HT and CT (median survival ≥ 4.4 yr). Accuracy was lower (73.4%) in 304 untreated patients. The performance of other machine learning approaches were also evaluated at different survival thresholds. Minimum redundancy maximum relevance feature selection of a paclitaxel-based SVM classifier based on expression of ABCB11, ABCC1, BAD, BBC3 and BCL2L1 was 79% accurate in 53 CT patients. A random forest (RF) classifier produced a gene signature (ABCB11, ABCC1, BAD, BCL2, CYP2C8, CYP3A4, MAP4, MAPT, NR1I2, TUBB1, GBP1, OPRK1) that predicted >3 year survival with 82.4% accuracy in 420 HT patients. A similar RF gene signature showed 79.6% accuracy in 504 patients treated with CT and/or HT. These results suggest that tumor gene expression signatures refined by machine learning techniques can be useful for predicting survival after drug therapies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1442-1442
Author(s):  
Damian Silbermins ◽  
Laura M. De Castro ◽  
Jude C Jonassaint ◽  
Shiaowen David Hsu ◽  
Marilyn J. Telen ◽  
...  

Abstract Pulmonary artery hypertension (PAH) occurs in 30–50% of adult patients with sickle cell disease (SCD), with mortality ranging from 16 to 50% and a median survival of 25 months. Our objective was to use gene expression profiling to develop a gene signature predictor for PAH through the analysis of gene expression of blood cells from SCD patients with or without PAH. We hypothesized that these gene signatures could allow us to identify patients at risk for PAH, as well as to generate hypotheses as to the pathophysiology of PAH in SCD. We used Affymetrix U133A2 GeneChip to determine the RNA expression of both whole blood and leukocytes using PAXgene and Leukolock methods, respectively. The study population included patients homozygous for HbS or with HbSβ0 thalassemia. Subjects with PAH were ≥18 years old, in steady state, and had PAH either by 2D echo (TR jet ≥ 2.7 m/sec) or right-sided catheterization (mean PA pressure ≥ 30 mmHg). Patients were excluded if they were pregnant, had co-existing rheumatologic conditions or other inflammatory diseases, were on chronic transfusion therapy or had had a vaso-occlusive episode in the previous 4 weeks. The control subjects were patients with SCD but without PAH (TR jet ≤ 1.8 m/sec or mean PA pressure &lt;25 mmHg). Hierarchical clustering based on the gene expression pattern from 7 patients with PAH and 6 controls showed a trend for the clustering of SCD patients with PAH away from SCD patients without PAH. This trend was present for the gene expression in both whole blood and leukocytes. A Bayesian regression analysis was then performed to identify a set of predictor gene signatures for the PAH phenotype (Figure 1) in SCD. Finally, using gene set enrichment analysis, we found that the leukocytes from patients with PAH were highly enriched in the gene sets deriving from hematopoietic stem cells, corroborating the hypothesis of hyperhemolysis and higher blood cell turnover in this population. Other pathways showing upregulation in PAH were PTEN, TGFβ, cyclin D1, WNT and PPAR. Although these data are preliminary, they suggest that PAH in SCD does indeed have a distinct gene signature profile that may become useful in identifying risk for PAH prospectively, as well as in directing further investigation into the pathogenesis of PAH in SCD. Figure Figure


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1133 ◽  
Author(s):  
Claudia Mazo ◽  
Stephen Barron ◽  
Catherine Mooney ◽  
William M. Gallagher

Determining which patients with early-stage breast cancer should receive chemotherapy is an important clinical issue. Chemotherapy has several adverse side effects, impacting on quality of life, along with significant economic consequences. There are a number of multi-gene prognostic signatures for breast cancer recurrence but there is less evidence that these prognostic signatures are predictive of therapy benefit. Biomarkers that can predict patient response to chemotherapy can help avoid ineffective over-treatment. The aim of this work was to assess if the OncoMasTR prognostic signature can predict pathological complete response (pCR) to neoadjuvant chemotherapy, and to compare its predictive value with other prognostic signatures: EndoPredict, Oncotype DX and Tumor Infiltrating Leukocytes. Gene expression datasets from ER-positive, HER2-negative breast cancer patients that had pre-treatment biopsies, received neoadjuvant chemotherapy and an assessment of pCR were obtained from the Gene Expression Omnibus repository. A total of 813 patients with 66 pCR events were included in the analysis. OncoMasTR, EndoPredict, Oncotype DX and Tumor Infiltrating Leukocytes numeric risk scores were approximated by applying the gene coefficients to the corresponding mean probe expression values. OncoMasTR, EndoPredict and Oncotype DX prognostic scores were moderately well correlated according to the Pearson’s correlation coefficient. Association with pCR was estimated using logistic regression. The odds ratio for a 1 standard deviation increase in risk score, adjusted for cohort, were similar in magnitude for all four signatures. Additionally, the four signatures were significant predictors of pCR. OncoMasTR added significant predictive value to Tumor Infiltrating Leukocytes signatures as determined by bivariable and trivariable analysis. In this in silico analysis, OncoMasTR, EndoPredict, Oncotype DX, and Tumor Infiltrating Leukocytes were significantly predictive of pCR to neoadjuvant chemotherapy in ER-positive and HER2-negative breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document