Genome-Wide Programming of Myeloid Cell Fates

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-29-SCI-29
Author(s):  
Berthold Göttgens

Abstract Abstract SCI-29 Hematopoiesis represents one of the most tractable models of adult stem cell development and differentiation. Transcription factor (TF) proteins have long been recognized as major regulators of blood stem cell development as well as the subsequent differentiation into the multiple mature hematopoietic lineages. Seminal studies in multiple vertebrate model systems have identified specific TFs that control cell fate choices during myeloid differentiation (1). It remains largely unknown, however, how individual TFs are integrated into wider transcriptional regulatory networks, and how combinatorial TF interactions within these networks drive lineage specific gene expression programs. We are addressing these issues using two complementary approaches. First, we use a combination of transgenic reporter assays and network modeling approaches to reconstruct core transcription factor networks operating in early myeloid differentiation. Second, we employ genome-scale analysis of transcription factor binding sites for key hematopoietic regulators in both stem/progenitor cells and mature lineages (2,3). Integrated analysis of genome-scale datasets reveals previously unrecognized combinatorial interactions within core hematopoietic regulatory networks, which can be validated using both biochemical and mouse knockout approaches. Moreover, our studies also pinpoint novel candidate hematopoietic regulators, several of which we have validated using high throughput loss-of-function assays in zebrafish. Disclosures: No relevant conflicts of interest to declare.

2002 ◽  
Vol 6 (4) ◽  
pp. 491-495 ◽  
Author(s):  
Gerhard Behre ◽  
Venkateshwar A Reddy ◽  
Daniel G Tenen ◽  
Wolfgang Hiddemann ◽  
Abdul A Peer Zada ◽  
...  

2020 ◽  
Author(s):  
Dimitris Katsanos ◽  
Michalis Barkoulas

SummaryTranscription factors are key orchestrators of development in multicellular animals and display complex patterns of expression, as well as tissue-specific binding to targets. However, our ability to map transcription factor-target interactions in specific tissues of intact animals remains limited. We introduce here targeted DamID (TaDa) as a method to identify transcription factor targets with tissue-specific resolution in C. elegans. We focus on the epidermis as a paradigm and demonstrate that TaDa circumvents problems with Dam-associated toxicity and allows reproducible identification of putative targets. Using a combination of TaDa and single-molecule FISH (smFISH), we refine the positions of LIN-22 and NHR-25 within the epidermal gene network. We reveal direct links between these two factors and the cell differentiation programme, as well as the Wnt signalling pathway. Our results illustrate how TaDa and smFISH can be used to dissect the architecture of tissue-specific gene regulatory networks.HighlightsTaDa circumvents Dam-associated toxicity by keeping levels of Dam expression low.TaDa allows the recovery of tissue-specific methylation profiles representing TF binding.Methylation signal is enriched in regulatory regions of the genome.LIN-22 and NHR-25 targets reveal a link to cell differentiation and Wnt signalling.


2018 ◽  
Author(s):  
Leah L. Zagore ◽  
Cydni C. Akesson ◽  
Donny D. Licatalosi

AbstractSpermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue-specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre-lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.


2010 ◽  
Author(s):  
Pallavi Gupta ◽  
Gurudutta Gangenahalli ◽  
Daman Saluja ◽  
Yogesh Verma ◽  
Jyoti Zack ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2471
Author(s):  
Azaz Ahmad ◽  
Stephanie Strohbuecker ◽  
Claudia Scotti ◽  
Cristina Tufarelli ◽  
Virginie Sottile

The transcription factor SOX1 is a key regulator of neural stem cell development, acting to keep neural stem cells (NSCs) in an undifferentiated state. Postnatal expression of Sox1 is typically confined to the central nervous system (CNS), however, its expression in non-neural tissues has recently been implicated in tumorigenesis. The mechanism through which SOX1 may exert its function is not fully understood, and studies have mainly focused on changes in SOX1 expression at a transcriptional level, while its post-translational regulation remains undetermined. To investigate this, data were extracted from different publicly available databases and analysed to search for putative SOX1 post-translational modifications (PTMs). Results were compared to PTMs associated with SOX2 in order to identify potentially key PTM motifs common to these SOXB1 proteins, and mapped on SOX1 domain structural models. This approach identified several putative acetylation, phosphorylation, glycosylation and sumoylation sites within known functional domains of SOX1. In particular, a novel SOXB1 motif (xKSExSxxP) was identified within the SOX1 protein, which was also found in other unrelated proteins, most of which were transcription factors. These results also highlighted potential phospho-sumoyl switches within this SOXB1 motif identified in SOX1, which could regulate its transcriptional activity. This analysis indicates different types of PTMs within SOX1, which may influence its regulatory role as a transcription factor, by bringing changes to its DNA binding capacities and its interactions with partner proteins. These results provide new research avenues for future investigations on the mechanisms regulating SOX1 activity, which could inform its roles in the contexts of neural stem cell development and cancer.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-2-SCI-2
Author(s):  
Bertie Gottgens

Abstract Transcription factor proteins have long been recognized as key regulators of blood stem cell function. They are thought to act as components of wider regulatory networks, with combinatorial interactions responsible for directing blood stem cell fate choices. However, the complexity of these networks coupled with the infrequency of stem cells have presented formidable challenges for past research efforts aiming to define blood stem cell regulatory networks. Importantly, recent innovations in single cell genomics and computational network inference technologies offer new opportunities to better understand the regulatory network control of blood cell development. The Göttgens group uses a combination of experimental and computational approaches to study how transcription factor networks control the function of blood stem cells and how mutations that perturb such networks cause leukemia. This integrated approach has resulted in the discovery of new combinatorial interactions between key blood stem cell regulators, as well as experimentally validated computational models for blood stem cells. Current research focuses on single cell genomics of early blood development and the development of computer models to chart the transcriptional landscape of blood stem and progenitor cell differentiation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Tyler Hansen ◽  
Emily Hodges

Transcriptional enhancers control cell-type specific gene expression in humans and dysfunction can lead to debilitating diseases, including cancer. Identifying bona-fide enhancers is difficult due to a lack of spatial or sequence constraints. In addition, only a small percentage of the genome is accessible in matured cell types; and therefore, most enhancers are inactive due to their chromatin context rather than intrinsic properties of the DNA sequence itself. For this reason, we decided to assay regulatory activity exclusively within accessible chromatin. To do this, we combined assay for transposase-accessible chromatin using sequencing (ATAC-seq) with self-transcribing active regulatory region sequencing (STARR-seq); we call this method ATAC-STARR-seq. With ATAC-STARR-seq, we identify both active and silent regulatory elements in GM12878 B cells; these active and silent elements are enriched for transcription factor motifs and histone modifications associated with activating and repressing regulation, respectively. We also show that ATAC-STARR-seq quantifies chromatin accessibility and transcription factor binding. We integrate this information and subset active regions based on transcription factor binding profiles. Depending on the transcription factors bound, subsets are enriched for distinct reactome pathways. Altogether, this highlights the power of ATAC-STARR-seq to investigate the transcriptional regulatory landscape of the human genome.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1227-1227
Author(s):  
Jian Xu ◽  
Zhen Shao ◽  
Kimberly Glass ◽  
Daniel E. Bauer ◽  
Luca Pinello ◽  
...  

Abstract Abstract 1227 Erythropoiesis in mammals occurs in three waves consisting of primitive progenitors in the yolk sac, definitive erythroid precursors in the fetal liver and later in the postnatal bone marrow. The molecular determinants of developmental stage-specific gene expression programs remain largely unknown. Several transcription factors, including GATA1 and TAL1, are essential for normal erythroid development in vivo and are recognized as ‘master’ regulators. These lineage-specifying master regulators, together with other transcriptional co-regulators, act within complexes on chromatin, establish transcriptional networks, and orchestrate the differentiation process. However, it is less clear how master regulators control gene expression programs at different stages of development within the same cell lineage. We reasoned that comparative transcriptome, transcription factor, and epigenetic profiling of closely related cell types corresponding to distinct developmental stages should delineate the regulatory networks that are directly related to the associated gene expression programs. Classification of the trans- and cis-regulatory elements that are either shared or stage-specific should clarify their relative importance and prioritize functional candidates. To explore this approach, we focused on an ex vivo maturation system for human fetal and adult erythropoiesis. Primary human hematopoietic stem/progenitor cells (HSPCs) are propagated and induced for erythroid differentiation ex vivo. We first determined the mRNA expression profiles in both fetal and adult HSPCs and differentiating proerythroblasts (ProEs). Comparative transcriptome profiling revealed distinct gene expression programs at different stages of erythroid maturation. For example, 1039 and 1291 genes linked to distinct functional annotations were differentially expressed (fold change > 1.5, FDR < 0.05) in fetal and adult ProEs, respectively. To investigate the underlying basis of these distinct gene expression programs, we generated genome-wide maps for chromatin state and transcription factor occupancy by a ChIP-seq approach. Specifically, we profiled 9 histone modifications (H3K4me1/me2/me3, H3K9me3, H3K37me3, H3K36me2/me3, H3K9ac, and H3K27ac) and 6 transcription factors (GATA1, TAL1, NFE2, CTCF, RAD21, and RNA polymerase II) in both fetal and adult ProEs. Contrasting the similarities and differences between human fetal and adult erythropoiesis provides important insights into the erythroid gene expression programs and gene regulatory networks operating at different stages of development. We find that gene-distal enhancers, rather than promoters, are marked with highly stage-specific histone modifications and DNase I hypersensitivity, strongly correlate to developmental stage-specific gene expression changes, and are functionally active in a stage-specific manner. The master regulators GATA1 and TAL1 act cooperatively within active enhancers but have little predictive value for stage-specific transcriptional activity. Differential enrichment of consensus motifs for binding of transcription factors within fetal or adult stage-specific enhancers provides a strategy for identifying candidate co-regulators that drive differential gene expression and stage-specificity. By this computational approach and subsequent functional validation, we demonstrate that the interferon regulatory factors IRF2 and IRF6 are essential for activation of adult erythroid gene expression programs in cooperation with master regulators and cohesin-mediator complexes at distal enhancers. Thus, the comparative profiling of red cell development provides critical insights into the ontogeny of human erythropoiesis and temporal regulation of transcriptional networks in a mammalian genome. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arno Meiler ◽  
Fabio Marchiano ◽  
Margaux Haering ◽  
Manuela Weitkunat ◽  
Frank Schnorrer ◽  
...  

AbstractGene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into different gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell-type specific gene expression. We have developed the AnnoMiner web-server, an innovative and flexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user-provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two different transcriptional regulators together with gene features. Third, AnnoMiner offers to explore the transcriptional deregulation of genes nearby, or within a specified genomic region surrounding a user-provided peak. AnnoMiner’s fourth function performs transcription factor or histone modification enrichment analysis for user-provided gene lists by utilizing hundreds of public, high-quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied process without the strict need for chromatin data from the same process. We compared AnnoMiner to existing tools and experimentally validated several transcriptional regulators predicted by AnnoMiner to indeed contribute to muscle morphogenesis in Drosophila. AnnoMiner is freely available at http://chimborazo.ibdm.univ-mrs.fr/AnnoMiner/.


Sign in / Sign up

Export Citation Format

Share Document