TC11, a Novel Phthalimide Derivative, Directly Binds to NPM1 and Induced Apoptosis of High-Risk Myeloma Cells Via Centrosomal Disruption

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1841-1841
Author(s):  
Saito Sosei ◽  
Kana Yoshikawa ◽  
Noriko Tabata ◽  
Hiroshi Yanagawa ◽  
Tsukasa Oikawa ◽  
...  

Abstract Abstract 1841 PURPOSE: Despite recent advances in the treatment of multiple myeloma (MM), patients with high-risk chromosomal changes such as del13q, t(4;14) or del17p revealed significantly shorter survival. In addition, bone disease markedly reduces quality of life of the patients with MM. To overcome these problems, we have designed and screened synthetic phthalimides which significantly inhibited the growth of MM cell lines with high-risk chromosomal abnormalities. The purposes of this study are to explore novel drugs which possess anti-tumor activity against high-risk MM cells and to examine the anti-osteoclastogenic activity and to isolate directly binding molecules. METHODS AND RESULTS: Thirty synthetic phthalimides were screened for anti-proliferative effect on KMS34 cells with t(4;14) and deletion of chromosome 17. A phthalimide derivative, 2-(2,6-diisopropylphenyl)- 5-amino- 1H-isoindole- 1,3- dione (TC11) significantly inhibited growth of KMS34 cells as well as other MM cells lines with high-risk chromosomal abnormalities (IC50 to KMS34 cells= 4μM). TC11 increased annexin V fraction and induced apoptosis in a caspase-dependent manner. In vivo anti-myeloma activity was evaluated using KMS34-bearing lcr/SCID mice by intraperitoneal injection of TC11. Twenty mg/kg of TC11 significantly inhibited growth of TC11-derived tumor cells, and apoptosis of MM cells was observed by histopathological examination. In order to evaluate hematological toxicity of TC11, growth of colony-forming cells was examined. In the presence of 5μM of TC11, formation of CFCs was not suppressed, suggesting low hematopoietic toxicity. In pharmacokinetic study using lcr/SCID mice, the plasma concentrations of TC11 was examined; Cmax=18.1μM, Tmax=1.5hr, T1/2 =4.5hr when 100mg/kg of TC11 was injected, and Cmax=2.1μM Tmax=1.0hr, T1/2 =4.5hr when 20mg/kg was injected. In order to examine efficacy to bone disease, anti-osteoclastogenic activity was examined by adding TC11 to M-CSF/RANK ligand-induced osteoclastogenic culture of mouse bone marrow mononuclear cells. The number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts was reduced in the presence of 1μM of TC11. It was also found that TC11 inhibited bone resorption by pit assay. We also tried to isolate directly binding proteins to TC11 by our unique in vitro selection system using mRNA display, in vitro virus (IVV) method. We identified nucleophosmin 1 (NPM1) as a TC11-binding molecule. Knockdown assay introducing siRNA for NPM1 into HeLa cells induced emergence of the cells with multipolar spindles, suggesting centrosomal disruption during cell division. Since NPM1 gene localizes at chromosome 5q, anti-MDS effect of TC11 was also examined. TC11 also inhibited growth of MDS-L cells (IC50=7μM). CONCLUSION: A novel phthalimide derivative, TC11, has anti-MM activity in vivo and is a potentially effective drug for high-risk MM with bone lesions. TC11 directly binds to NPM1 and induces apoptosis of MM and MDS cells with low toxicity to normal hematopoiesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5718-5718
Author(s):  
Yutaka Hattori ◽  
Maiko Matsushita ◽  
Noriko Tabata ◽  
Hirokazu Shiheido ◽  
Hiroshi Yanagawa ◽  
...  

Abstract BACKGROUND: Despite recent advances in the use of newly developed drugs including immune-modulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide and proteasome inhibitors such as bortezomib, carfilzomib, and MLN9708, MM is still an incurable disease. In particular, MM patients harboring 17p deletion, t(14;16), t(14;20), or t(4;14) are classified as a high-risk group and have shown significantly shorter survival. With the goal of helping prolong the survival of these high-risk MM patients, we screened 29 synthetic phthalimide derivatives and found a novel compound, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3-dione (TC11), which induced the apoptosis of KMS34 cells with t(4;14) and del17p13. PURPOSE:The purpose of this project is to clarify preclinical effects of the synthetic phthalimide derivative, TC11, on high-risk MM cell lines and osteoclasts. Namely, anti-myeloma and anti-osteoclastogenic activities and pharmacokinetic study in mice were shown. We also try to isolate directly binding molecules. Safety issues including hematological toxicities and teratogenicity were also discussed. METHODS AND RESULTS: TC11 significantly inhibited growth of MM cell lines (IC50 4-8μM) including KMS34 and KMS11 cells which have high-risk chromosomal abnormalities. TC11 also suppressed the proliferation of all of the bone marrow cells obtained from the MM patients, in a dose-dependent manner. TC11 increased annexin V-positive fraction and induced apoptosis. TC11 was injected intraperitonealy into myeloma (KMS34 and KMS11 cells)-bearing lcr/SCID mice, and anti-myeloma activity was evaluated in vivo. Twenty mg/kg of TC11 significantly inhibited growth of KMS34 or KMS11-derived plasmacytomas. Apoptosis of MM cells was observed by histopathological examination. In order to evaluate hematological toxicity of TC11, growth of colony-forming cells was examined. In the presence of 5μM of TC11, formation of CFCs was not significantly suppressed, suggesting low hematopoietic toxicity. In the pharmacokinetic analyses using lcr mice, the plasma concentrations of TC11 was examined; Cmaxwas 18.1μM at 1.5hr (Tmax), and T1/2 was 2.5hr, when 100mg/kg of TC11 was injected. If 20mg/kg was injected, Cmaxwas 2.1μM at 1.0hr (Tmax), and T1/2 was 1.2hr. Oral administration of TC11 to Icr mice was safely carried out, and results of pharmacokinetic study will be shown. Aiming at the therapeutic use of TC11 to bone disease, anti-osteoclastogenic activity was examined. Mouse bone marrow mononuclear cells were incubated in the presence of M-CSF and RANK-ligand. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts was reduced in number in the presence of 1μM of TC11. It was also found that 1μM of TC11 inhibited bone resorption by pit assay. We have identified nucleophosmin 1 (NPM1) and α-tubulin as TC11-binding molecules using our unique in vitro selection system using mRNA display, in vitro virus (IVV) method. However, cereblon (CRBN) was not detected as a TC11-binding protein by this method. The immunofluorescent analysis showed that TC11-treated cells exhibited elevated levels of α-tubulin fragmentation. Together with our previous observation of induction of centrosomal disruption of HeLa cells by NPM1-knock down, TC11 may cause anti-myeloma effects via mitotic catastrophe. CONCLUSION: We have demonstrated that TC11, a novel phthalimide derivative, has anti-tumor activity against MM cells with high-risk genetic abnormality including del 17p and t(4;14), in vitro and in vivo. This novel compound also down-regulates the differentiation and function of osteoclasts. Our data provide a strong preclinical rationale for TC11 as a safe and effective drug for the treatment of high-risk MM patients with bone disease. The actions of this drug relating to α-tubulin and NPM1 remain to be further investigated. TC11 exerts its anti-myeloma effect via molecular interactions which do not involve CRBN. In addition, TC11 does not form racemate and is expected to lack teratogenicity. The results of our present study suggest that new phthalimide derivatives other than thalidomide, lenalidomide and pomalidomide could be developed by drug designing for the treatment of MM. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Fairouz Sioud ◽  
Souheila Amor ◽  
Imène ben Toumia ◽  
Aida Lahmar ◽  
Virginie Aires ◽  
...  

Despite major advances in the last 10 years, whether in terms of prevention or treatment, the 5 year survival rate remains relatively low for a large number of cancers. These therapeutic failures can be the consequence of several factors associated with the cellular modifications or with the host by itself, especially for some anticancer drugs such as cisplatin, which induces a nephrotoxicity. In the strategy of research for active molecules capable both of exerting a protective action against the deleterious effects of cisplatin and exerting a chemosensitizing action with regard to cancer cells, we tested the potential effects of Ephedra alata Decne extract (E.A.) rich in polyphenolic compounds towards a 4T1 breast cancer model in vitro and in vivo. We showed that E.A. extract inhibited cell viability of 4T1 breast cancer cells and induced apoptosis in a caspase-dependent manner, which involved intrinsic pathways. Very interestingly, we observed a synergic antiproliferative and pro-apoptotic action with cisplatin. These events were associated with a strong decrease of breast tumor growth in mice treated with an E.A./cisplatin combination and simultaneously with a decrease of hepato- and nephrotoxicities of cisplatin.


2020 ◽  
Vol 21 (16) ◽  
pp. 5815
Author(s):  
Hongqing Xie ◽  
Xiaotong Li ◽  
Weiwei Yang ◽  
Liping Yu ◽  
Xiasen Jiang ◽  
...  

Gastric cancer is the most common malignant tumor of the digestive tract and is great challenge in clinical treatment. N6-(2-Hydroxyethyl)-adenosine (HEA), widely present in various fungi, is a natural adenosine derivative with many biological and pharmacological activities. Here, we assessed the antineoplastic effect of HEA on gastric carcinoma. HEA exerted cytotoxic effects against gastric carcinoma cells (SGC-7901 and AGS) in a dose and time-dependent manner. Additionally, we found that HEA induced reactive oxygen species production and mitochondrial membrane potential depolarization. Moreover, it could trigger caspase-dependent apoptosis, promoting intracellular Ca2+-related endoplasmic reticulum (ER) stress and autophagy. On the other hand, HEA could significantly inhibit the growth of transplanted tumors in nude mice and induce apoptosis of tumor tissues cells in vivo. In conclusion, HEA induced apoptosis of gastric carcinoma cells in vitro and in vivo, demonstrating that HEA is a potential chemotherapeutic agent for gastric carcinoma.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321386
Author(s):  
Shushu Song ◽  
Yinghong Shi ◽  
Weicheng Wu ◽  
Hao Wu ◽  
Lei Chang ◽  
...  

ObjectiveDysfunction of endoplasmic reticulum (ER) proteins is closely related to homeostasis disturbance and malignant transformation of hepatocellular carcinoma (HCC). Reticulons (RTN) are a family of ER-resident proteins critical for maintaining ER function. Nevertheless, the precise roles of RTN in HCC remain largely unclear. The aim of the study is to examine the effect of reticulon family member RTN3 on HCC development and explore the underlying mechanisms.DesignClinical HCC samples were collected to assess the relationship between RTN3 expression and patients’ outcome. HCC cell lines were employed to examine the effects of RTN3 on cellular proliferation, apoptosis and signal transduction in vitro. Nude mice model was used to detect the role of RTN3 in modulating tumour growth in vivo.ResultsWe found that RTN3 was highly expressed in normal hepatocytes but frequently downregulated in HCC. Low RTN3 expression predicted poor outcome in patients with HCC in TP53 gene mutation and HBV infection status-dependent manner. RTN3 restrained HCC growth and induced apoptosis by activating p53. Mechanism studies indicated that RTN3 facilitated p53 Ser392 phosphorylation via Chk2 and enhanced subsequent p53 nuclear localisation. RTN3 interacted with Chk2, recruited it to ER and promoted its activation in an ER calcium-dependent manner. Nevertheless, the tumour suppressive effects of RTN3 were abrogated in HBV-positive cells. HBV surface antigen competed with Chk2 for RTN3 binding and blocked RTN3-mediated Chk2/p53 activation.ConclusionThe findings suggest that RTN3 functions as a novel suppressor of HCC by activating Chk2/p53 pathway and provide more clues to better understand the oncogenic effects of HBV.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Tao Zhang ◽  
Wei Chen ◽  
Xumian Jiang ◽  
Lei Liu ◽  
Kai Wei ◽  
...  

Abstract The present study investigated the effects of Colchicine on gastric carcinoma (GC) cells and explored its possible mechanisms underlying such effects. The results of MTT and colony formation assays showed that Colchicine (2, 5, and 10 ng/ml) markedly inhibited the proliferation of AGS and NCI-N87 cells in a dose-dependent manner. It also led to a reduction in cell migration in both GC cells as determined by Transwell migration assay. Mover, data form Hoechst 33342 staining and flow cytometry assay indicated that Colchicine (2, 5, and 10 ng/ml) promoted the apoptosis of NCI-N87 cells. In addition, the release of cytochrome c, the activation of bax, and the inhibition of bcl-2 were observed in NCI-N87 cells treated with Colchicine. Furthermore, the in vivo experiment further confirmed that Colchicine administration remarkably suppressed the tumor growth in nude mice via induction of apoptosis at 0.05 and 0.1 mg/kg. In addition, no visible toxicity was observed in liver and renal tissue of mice. This finding suggests that Colchicine-induced apoptosis is associated with caspase-3-mediated mitochondrial apoptotic pathways.


2002 ◽  
Vol 22 (10) ◽  
pp. 3373-3388 ◽  
Author(s):  
Maofu Fu ◽  
Chenguang Wang ◽  
Jian Wang ◽  
Xueping Zhang ◽  
Toshiyuki Sakamaki ◽  
...  

ABSTRACT The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both trans repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-κB, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmina Bier ◽  
Sebastian M. Steiger ◽  
Holger M. Reichardt ◽  
Fred Lühder

Induction of T cell apoptosis constitutes a major mechanism by which therapeutically administered glucocorticoids (GCs) suppress inflammation and associated clinical symptoms, for instance in multiple sclerosis (MS) patients suffering from an acute relapse. The sensitivity of T cells to GC action depends on their maturation and activation status, but the precise effect of antigen-priming in a pathological setting has not been explored. Here we used transgenic and congenic mouse models to compare GC-induced apoptosis between naïve and antigen-specific effector T cells from mice immunized with a myelin peptide. Antigen-primed effector T cells were protected from the pro-apoptotic activity of the synthetic GC dexamethasone in a dose-dependent manner, which resulted in their accumulation relative to naïve T cells in vitro and in vivo. Notably, the differential sensitivity of T cells to GC-induced apoptosis correlated with their expression level of the anti-apoptotic proteins Bcl-2 and Bcl-XL and a loss of the mitochondrial membrane potential. Moreover, accumulation of antigen-primed effector T cells following GC treatment in vitro resulted in an aggravated disease course in an adoptive transfer mouse model of MS in vivo, highlighting the clinical relevance of the observed phenomenon. Collectively, our data indicate that antigen-priming influences the T cells’ sensitivity to therapeutically applied GCs in the context of inflammatory diseases.


2008 ◽  
Vol 22 (7) ◽  
pp. 1622-1632 ◽  
Author(s):  
Yan-Dong Wang ◽  
Fan Yang ◽  
Wei-Dong Chen ◽  
Xiongfei Huang ◽  
Lily Lai ◽  
...  

Abstract The farnesoid X receptor (FXR) is a key metabolic regulator in the liver by maintaining the homeostasis of liver metabolites. Recent findings suggest that FXR may have a much broader function in liver physiology and pathology. In the present work, we identify a novel role of FXR in protecting liver cell from apoptosis induced by nutritional withdrawal including serum deprivation in vitro or starvation in vivo. Two FXR ligands, chenodeoxycholic acid (CDCA) and GW4064, rescued HepG2 cells from serum deprivation-induced apoptosis in a dose-dependent manner. This effect of FXR on apoptotic suppression was compromised when FXR was knocked down by short interfering RNA. Similarly, the effects of both CDCA and GW4064 were abolished after inhibition of the MAPK pathway by a specific inhibitor of MAPK kinase 1/2. Immunoblotting results indicated that FXR activation by CDCA and GW4064 induced ERK1/2 phosphorylation, which was attenuated by serum deprivation. In vivo, FXR−/− mice exhibited an exacerbated liver apoptosis and lower levels of phosphorylated-ERK1/2 compared to wild-type mice after starvation. In conclusion, our results suggest a novel role of FXR in modulating liver cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document