Eosinophils in the Bone Marrow Microenvironment: Effects On Malignant Plasma Cell Biology.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2917-2917
Author(s):  
Tina W. Wong ◽  
Denise K. Walters ◽  
Hirohito Kita ◽  
Diane F. Jelinek

Abstract Abstract 2917 Multiple myeloma (MM) is a cancer in the bone marrow (BM) characterized by the accumulation of transformed plasma cells (PCs). The pre-malignant form of the disease, monoclonal gammopathy of undetermined significance (MGUS), shares many of the genetic abnormalities found in MM, including chromosomal translocations, hyperdiploidy, and gene-specific mutations. Given this, we believe other factors within the tumor microenvironment must contribute to disease progression by influencing cell survival and/or proliferation. Eosinophils (Eos) are granulocytic leukocytes that are best known for their involvement in host immune defense and pathologic states such as allergy and asthma. Recently, they were also shown to play a role in the regulation of murine BM PC homeostasis via their secretion of IL-6 and APRIL. Murine BM PCs and Eos both express CXCR4 and are believed to home to CXCL12 expressing stromal cells (SCs) in the BM. The goal of this study, therefore, was to investigate whether Eos, or soluble mediators released by Eos, have biological activity on MM cells. Thus, it is possible that this type of innate immune cell may be present in the tumor microenvironment in MM patients to support disease progression. To our knowledge, a potential role for Eos in MM has not been previously studied. We began our studies by assessing whether Eos are co-localized with normal BM PCs and/or MM PCs. Immunofluorescence analysis of BM core biopsies from normal subjects revealed occasional colocalization of PCs with Eos. Similarly, MM biopsies showed regions of MM cell clusters with increased Eos density, suggesting possible biological interactions. However, we also observed regions of MM cell clusters that lack Eos, which could indicate the liberation of these transformed cells from the requirement of Eos for survival/proliferation. Next, using Eos isolated from human BM aspirates and a panel of disease-relevant human MM cell lines (HMCLs) extensively characterized in our laboratory, we aimed to verify that MM cells and Eos could both migrate toward the chemokine CXCL12. Our data showed that indeed the KAS-6/1, ANBL-6, DP-6, and KP-6 HMCLs and human BM Eos all migrated toward this chemokine. We then determined if Eos had biological activity towards MM cells as revealed by enhanced DNA synthesis. Consistent with our interpretation of the immunofluorescence stained sections, the proliferation of some, but not all, HMCLs was enhanced when cocultured with Eos isolated from either human BM or peripheral blood. To address whether contact between Eos and HMCLs was required for this phenomenon, we assessed HMCL proliferation upon treatment with Eos culture supernatant (SN). Our data suggest that the effect of Eos on the Eos-inducible HMCLs can be contact-independent as treatment of these HMCLs with Eos SN increased their proliferation. Similarly, proliferation of primary CD138+ MM cells was also enhanced when treated with Eos SN. Because BM PCs reside in niches that include support cells such as SCs and that proliferation of MM PCs is enhanced in the presence of SCs, we next questioned whether Eos can substitute for SCs in this niche or if Eos and SCs support PC survival/proliferation through different mechanisms. We observed that Eos and BM SCs together stimulated more HMCL proliferation than either cell type did alone, indicating the presence of non-redundant roles for the two cell types. Finally, we began to investigate the mechanism by which Eos enhance HMCL proliferation. In contrast to prior reports that murine Eos express IL-6, mRNA transcripts of IL-6, a known proliferation-inducing cytokine for MM cells, were not detected in human Eos. Moreover, analysis of the Eos SN showed an absence of IL-6. Neutralization of IL-6 in the HMCL-Eos coculture did not abolish the induced proliferation. Altogether, these data suggest that human Eos utilize a yet to be identified, IL-6-independent mechanism to support malignant PC proliferation. Taken together, our data show that Eos and MM cells can colocalize in the BM via their migration toward a common source of CXCL12, i.e. BM SCs, to create a niche that promotes tumor cell growth. Eos can enhance malignant PC proliferation via soluble products, although additional contact-dependent effects may exist as well and have not been explored. Additional studies are currently underway to further characterize the mechanism by which Eos may influence the biology of MM in the tumor microenvironment. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1741-1741
Author(s):  
Chandana Koorella ◽  
Jayakumar Nair ◽  
Louise Carlson ◽  
Megan Murray ◽  
Cheryl H Rozanski ◽  
...  

Abstract Abstract 1741 Multiple myeloma is a neoplasm of bone marrow resident plasma cells characterized by critical interactions between myeloma cells and bone marrow stromal cells. This interaction leads to production of IL-6, an important factor in myeloma cell biology. However, the molecular and cellular components involved in myeloma induced IL-6 production remain largely uncharacterized. While at the cellular level, dendritic cells (DC)-expressing CD80/CD86 (collectively called B7, ligands with short cytoplasmic tails and signaling partners of CD28 expressed on myeloma cells) - in the bone marrow microenvironment have been implicated as being an important component, at the molecular level the CD28-B7 and Notch1-Jagged2 pathways were separately implicated by us (in DC) and others in myeloma induced IL-6 production. Although Notch signaling leading to IL-6 production in DC is well understood, the mechanism of “backsignaling” via B7 is largely uncharacterized. To better understand downstream B7 signaling leading to IL-6 production, DC were stimulated with CD28-Ig (a soluble form of CD28 which mimicks myeloma cell-bound CD28) in the presence or absence of an inhibitor of Notch signaling, gamma secretase inhibitor (GSI). DC treated with CD28-Ig alone produced significantly (p< 0.001) higher levels of IL-6 when compared to DC treated with CD28-Ig and GSI. GSI specifically targeted Notch signaling as observed by decreased expression of Notch gene targets: Hes-1 (2 fold decrease) and Deltex-4 (4 fold decrease). Also, decreased IL-6 levels in presence of GSI were not due to the decrease in B7 expression on DC. To specifically implicate the importance of Notch1 and Jagged2, we blocked Notch1 signaling using blocking antibodies and observed a similar decrease in IL-6 production upon blocking Notch1 signaling. Our results suggest that CD28 mediated IL-6 production is dependent on Notch1 signaling and crosstalk between the Notch1-Jagged2 and CD28-B7 pathways leads to IL-6 production by DC. The model of crosstalk between CD28-B7 and Notch1-Jagged2 pathways was also observed in murine bone marrow derived dendritic cells (BMDC), where a significant (p<0.001) down regulation of IL-6 was observed upon blocking Notch signaling. One possible mechanism of crosstalk involves direct effect of B7 crosslinking by CD28-Ig on Notch expression/signaling leading to increase in IL-6 production. We tested for this possibility in DC and found no significant change in Notch expression/signaling. We thus hypothesized that the mechanism of crosstalk involves molecules downstream to Notch and/or B7. Notch signaling has been reported to be involved in the regulation of PTEN (a negative regulator of the PI3K/Akt pathway). Previous studies have also shown the importance of FoxO3a-a transcription factor tightly regulated by Akt- in regulating IL-6 production in BMDC upon B7 crosslinking. We therefore tested the possible involvement of PTEN (molecule downstream of Notch signaling), Akt and FoxO3a (molecules downstream of B7) in crosstalk between the two pathways aforementioned by testing the effect of GSI on their regulation at the protein level. We observed an approximate 2 fold decrease in phospho-PTEN/PTEN ratio in DC treated with GSI and remained so even after B7 crosslinking at an early time point (15 min. post CD28-Ig treatment.) Further, phospho-Akt/Akt ratio decreased by 1.6 fold in DC treated with both GSI and CD28-Ig compared to CD28-Ig alone at 30 min. We therefore hypothesize a model of crosstalk involving Notch mediated regulation of PTEN leading to IL-6 production via regulation of Akt and possibly FoxO3a upon B7 crosslinking. Interestingly enough “backsignaling” via B7 in myeloma-induced IL-6 production seems to involve molecules well characterized in CD28 signaling of T-cells. Targeting IL-6 induced by crosstalk between these two pathways prompts not only clinical evaluation to improve MM patient outcome but also extends to advancing knowledge in T-cell and normal plasma cell biology as well. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3431-3431
Author(s):  
Neelam Giri ◽  
Blanche P Alter ◽  
Helkha Peredo-Pinto ◽  
M. Tarek Elghetany ◽  
Irina Maric ◽  
...  

Abstract Abstract 3431 Recurring clonal cytogenetic abnormalities have been described in patients with Fanconi anemia (FA) and Shwachman-Diamond syndrome (SDS). In FA, gains of 3q and monosomy 7 (−7) imply progression to myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). In SDS, isochromosome 7q and deletion (del) 20q are usually benign. Dyskeratosis congenita (DC) and Diamond-Blackfan anemia (DBA) do not have unique clones. We report here the types and frequencies of cytogenetic clones and their association with morphologic MDS or AML in the major inherited bone marrow failure syndromes (IBMFS), in a prospective/ retrospective study of patients with FA, SDS, DC and DBA enrolled in the NCI IBMFS cohort from 2002–2010. Bone marrow (BM) morphology and cytogenetics (G-banding; selected FISH, CGH, SKY) performed at our institute and all outside cytogenetics reports were centrally reviewed. Cytogenetic abnormalities were defined and karyotypes designated according to ISCN (2009). Two independent blinded hematopathologists reviewed BM morphology. Diagnosis of morphologic MDS was based on a modification of WHO 2008 and required ≥10% dysplasia in 2 cell lineages. Data analysis was both cross-sectional and longitudinal. P values are global comparing all 4 disorders using Fisher's exact test.ParameterAll IBMFSFASDSDCDBAP valueTotal number (N)12835113646–N with clone ever2817 (49%)4 (36%)4 (11%)3 (7%)<0.01N with MDS ever105 (14%)3 (27%)1 (3%)1 (2%)0.01N with clone + MDS75 (14%)2 (18%)00<0.01N with clone alone2112 (34%)2 (18%)4 (11%)3 (7%)<0.01N with MDS alone301 (9%)1 (3%)1 (2%)0.3N with clone at 1st BM179 (26%)4 (36%)3 (8%)1 (2%)<0.01N with clones at follow-up118012<0.01N with follow-up BMs591791716–Median follow-up in years3 (0–19)6 (1–16)2 (1–6)3 (0–19)2 (0–10)– More FA and SDS patients had clones and/or MDS compared with DC or DBA (Table). MDS was always associated with clones in FA but not in the other IBMFS. In FA, bone marrow transplant (BMT) or death occurred with similar frequencies in those with or without clones. Among 17 patients with clones, follow-up cytogenetics were unavailable in 5; of these, 2 with clone alone [one with del 7q and 18p and one with t(3;6)(q?25;p?21)] progressed to AML, while one with clone and MDS died from other causes. Recurring abnormalities in 12 FA patients with clones followed for up to 16 years, included gains of 1q in 4, −7 or del 7q in 3, and deletions of 6p, 13q, 18p and 20q in 2 patients each; only one had gain of 3q. These patients showed fluctuation or disappearance of clones, new appearance of clones, stable clone, or clonal evolution. Progression to MDS occurred with gain of 1q and 6p deletion, gain of 3q, or −7 in 3 patients, respectively; one patient with MDS had clonal persistence. No disease progression was seen in 5 FA patients with clone alone. All 5 SDS patients with clones and/or MDS are alive with no disease progression. The 4 with a clone had stable persistent del 20q as a sole abnormality; 2 had MDS and 2 did not. One had MDS with a normal karyotype. Four DC patients had abnormal clones including 2 with gain of 1q only. One patient with 1q gain died from pulmonary fibrosis. Three others are alive; 2 with stable clones at 7 and 19 years' follow-up, respectively. One additional DC patient has morphologic MDS but no clone. All 3 DBA patients with clones had del 16q, 2 alone and 1 with del 9p; none had MDS. The clones were transient in 2, disappearing within 1–2 years; the third was recently identified. None of these had disease progression. One patient with morphologic MDS alone died from complications of iron overload. This study shows that clonal chromosome abnormalities occur more frequently in FA and SDS than in DC and DBA. Gain of 3q in FA was not as common here as reported by others. This is the first comprehensive study of clones and MDS in DC and DBA. Strengths of this study include the large number of patients, and central review of cytogenetics and morphology. It is unbiased compared with FA literature reports that include many patients referred for BMT. Limitations include a relatively small number of patients with each diagnosis and short follow-up in most. The study demonstrates that clones may fluctuate or disappear, and may not per se portend a bad prognosis. Progression to clinically significant MDS or AML may be related to the severity of cytopenias and not to clone alone, and warrants more extensive long-term studies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2564-2564
Author(s):  
Jordan Basnett ◽  
Adam Cisterne ◽  
Kenneth F Bradstock ◽  
Linda J Bendall

Abstract Abstract 2564 G-CSF is commonly used to treat chemotherapy-induced neutropenia and for the mobilization of hematopoietic stem cells for transplantation in patients with leukemia. Administration of G-CSF has profound effects on the bone marrow microenvironment including the cleavage of molecules required for the maintenance of lymphopoiesis, including CXCL12 and VLA-4. We have recently reported that G-CSF results in the dramatic suppression of B-lymphopoiesis. This, together with previous reports by ourselves, and others, showing that disruption of CXCL12 or VLA-4 slow the progression of B-lineage ALL lead us to consider that G-CSF may similarly antagonize the progression of ALL. To explore this possibility, we examined the impact of G-CSF administration on six human ALL xenografts using a NOD/SCID mouse model. Mice were engrafted without radiation and G-CSF commenced when 1% of the bone marrow consisted of ALL cells. G-CSF was administered twice daily for 10 days, at which time all animals were culled and leukemia assessed in the blood, bone marrow and spleens. Surprisingly G-CSF was found to increase disease progression in two of xenografts investigated (1345 and 0398, referred to as G-CSF responsive xenografts hereafter), while the remainder demonstrated a small reduction in leukemia, with one showing a statistical significant decrease. No evidence for a direct mitogenic effect of G-CSF could be demonstrated in any of the xenografts using exogenous G-CSF in vitro cultures in the presence or absence of human or murine stromal support. Consistent with these findings, and previous reports, little to no G-CSF receptor was detected by flow cytometry or microarray analysis of xenografts. Microarray analysis of the xenografts revealed significant differences in gene expression between the G-CSF responsive xenografts and the remainder of the samples. A total of 83 genes were expressed at a higher level and 127 genes at a lower level in the G-CSF responsive xenografts. The more highly expressed genes included cell cycle regulators (eg cyclin A1), adhesion molecules (eg ALCAM), extracellular matrix components and surface receptors. Perhaps the most interesting was the exclusive expression of the acetylcholine receptor (cholinergic receptor, nicotinic, beta 4, nAChRb4) in the G-CSF responsive cases. Analysis of a large public dataset of childhood ALL samples revealed significantly higher expression of this gene in ALL samples with rearranged MLL (p<0.03). However, small numbers of cases in all ALL subgroups had greater than an 2 fold higher expression compared to normal B cell progenitors. The role of nAChR in the response of ALL cells to micro-environmental changes induced by G-CSF remains to be determined, however, nAChR has known roles in cell proliferation and inhibition of apoptosis. Furthermore G-CSF is known to induce acetylcholine production in other tissues. In summary, G-CSF inhibited leukemia progression in the majority of patient xenografts, however, in a subset of samples G-CSF accelerated disease progression. Clinically, G-CSF administration to ALL patients has not been associated with any major adverse outcomes. However our data suggest that a small subset of patients may experience accelerated disease. Identification of features associated with adverse responses to G-CSF will permit the identification of patients for whom G-CSF may present a risk for increased disease progression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4058-4058
Author(s):  
Andres C Garcia-Montero ◽  
Maria Jara-Acevedo ◽  
Ivan Alvarez-Twose ◽  
Cristina Teodosio ◽  
Laura Sanchez-Muñoz ◽  
...  

Abstract PURPOSE: Multilineageinvolvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here we investigated the potential involvement of BM mesenchymal stem cells (MSC) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. METHODS: The KIT D816V mutation was investigated in highly-purified BM MSC and other BM cell populations from 83 ISM patients followed for a median of 116 months. MC clonality was further evaluated in female patients by the pattern of inactivation of the X chromosome (XCIP). RESULTS: KIT D816V-mutated MSC were detected in 22/83 (27%) ISM patients. All MSC-mutated patients had multilineage KIT mutation (100% vs. 30%, p=0.0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P =.03) and a polyclonal XCIP of the KIT- mutated BM MC (64% vs 0%; P =0.01) vs other multilineage ISM cases. Moreover, presence of KIT D816V-mutated MSC was associated with more advanced disease features of ISM, a greater rate of disease progression (50% vs 17%; P =.04) and a shorter progression-free survival at 10, 20 and 30 years (P ≤.003). CONCLUSION: Overall, these results support the notion that ISM patients with mutated MSC may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSC and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1954-1954
Author(s):  
N. Scott Reading ◽  
Archana M Agarwal ◽  
Ronald Hoffman ◽  
Josef T. Prchal ◽  
Mohamed E Salama

Abstract Background: Primary myelofibrosis (PMF) is a clonal stem cell disorder associated with somatic mutations in three genes: Janus kinase 2 (JAK2), calreticulin (CALR) and thrombopoietin receptor (MPL). Although, our understanding of the microenvironment in PMF is limited, in PMF levels of Treg, cytotoxic T-cells, B-cells, macrophages and megakaryocyte cell populations have been reported to be elevated in either peripheral blood or bone marrow (BM) (Barosi Curr Hematol Malig Rep 2014). In addition, various cellular pathways including JAK/STAT, TGFβ1, and cytokine pathways (CXC family, hematopoietin family, PDGF family and TGF family), have been reported to play an important role in the dysregulation of hematopoietic cell proliferation and disease progression. Here-in we characterize the tumor microenvironment in formalin fixed paraffin embedded (FFPE) BM biopsies obtained from PMF patients and correlate these findings with mutational status. Methods: We applied the enzyme-free NanoString nCounter® PanCancer Immune Profiling Panel system (NanoString Technologies, Inc., Seattle, WA) to identify and assess immunological function in the microenvironement of archival FFPE bone marrow samples from patients with PMF. Twelve archival bone marrow FFPE biopsies from PMF patients along with clinical information and 5 normal controls were analyzed using upto 500ng of RNA (at 100ng/ul) for digital expression profiling. The panel included 109 genes that define 24 immune cell types and populations and forty housekeeping genes that facilitate sample-to-sample normalization. Data analysis was performed using nSolver software 3.0 and the Advanced Analysis Module (v.1.0.84). Results: Gene expression profiles for cellular immune pathways were analyzed for global changes based mutation. Globally, cellular functions involving immune cell development and cellular responses/functions were dramatically decreased in myelofibrotic marrow (chemokines, complement, cytokines, cytotoxicity) when compared to normal marrow. However, only in areas of adhesion, antigen processing, transporter function and senescence genes were transcription levels elevated over normal controls. Differential expression analysis of JAK2V617F+ marrow showed decreased expression of genes involved in cell regulation, NK cell function, T-cell functions and pathogen defense and increased expression of genes involved in inflammation, chemokines and transporter functions over normal marrow. Whereas CALR+ bone marrow biopsies showed fewer genes down regulated and an increased number of genes up regulated, particularly involved in fibrosis, inflammation, chemokines, adhesion, antigen processing and regulation. Pathway analysis suggested a particular role for FLT3 ligand in myeloid stem cell regulation, thrombospondin (THBS1) which has been reported to promote the activation of the latent forms of TGFβ1, and mitogen-activated protein kinases (JNK1, ERK) in PMF cell proliferation and differentiation. Conclusions: Digital immune expression profiling reveals a distinct PMF tumor microenvironment and illustrates potential transcriptional differences based on their mutational status. (JAK2+ or CALR+). These transcriptional changes in myelofibrotic marrow are reflected in global changes in immune cells and pathway activation These data provide for the first time in situ evidence of the importance of the immune system in PMF pathogenesis. Barosi G, 2014 An immune dysregulation in MPN. Curr Hematol Malig Rep 9:331-339. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1339-1339
Author(s):  
Namit Sharma ◽  
Pan Zhongda ◽  
Tracy Lauren Smith ◽  
Savar Kaul ◽  
Emilie Ernoult ◽  
...  

Abstract Dendritic cells (DCs) along with mast cells function as sentinels for the innate immune system and perform as antigen presenting cells (APCs) to mount an adaptive immune response against invading pathogen. FLT3 receptor tyrosine kinase signaling has been shown to regulate the homeostatic mechanisms of subsets of DCs particularly, CD103+DCs compared to CD11b+DCs. CD103+DCs are regarded as APCs with superior capabilities to mount an effective immune response, thus understanding their homeostasis mechanism(s)/function is of paramount importance to devise effective therapeutics including DC vaccines. The Src-like adapter protein (SLAP) has been shown to dampen the signaling downstream of receptor tyrosine kinases including FLT3, cKit, and immune cell receptors including T cell receptor, B cell receptor, and Granulocyte-monocyte colony stimulating factor receptor via by recruiting c-Cbl, an ubiquitin ligase. Here, we report that SLAP deficient mice (KO) have reduced numbers of CD103+DC in lung while equal numbers in liver and kidney compared to control mice. To further confirm reduced CD103+DC in the lung, efferocytosis assays that are dependent upon CD+103 DC in lung epithelium to cleanse the apoptotic cells were performed. Flow cytometric quantification of CD103+DCs that uptake fluorescently labeled apoptotic cells administered via intranasal route and migrate to mediastinal lymph nodes confirmed reduced number of CD103+DCs in SLAP KO mice. Further analysis of DC progenitor populations showed reduced pre-DC progenitor in the lung in SLAP KO mice while bone marrow compartment showed equal progenitor populations including pre-DC and common dendritic progenitors suggesting the role of SLAP in localized FLT3 signaling in the lung. Consistently, DCs in lymphoid compartment including spleen, thymus, inguinal and popliteal lymph node did not show any defects. Upon further dissecting the cellular mechanism, SLAP KO DCs showed increased apoptosis while having similar proliferation potential in vivo at steady state.Bone marrow progenitors from SLAP KO mice failed to generate mature DCs in the presence of FLT3 ligand in vitrodue to enhanced apoptosis at early time points. Also, submaximal inhibition of FLT3 with an inhibitor, quizartinib partially rescues the apoptotic phenotype of SLAP KO bone marrow progenitors suggesting a cell-intrinsic role of SLAP in the survival of DCs. Biochemical analysis revealed that SLAP is directly recruited to the juxta-membrane residues of the FLT3 receptor in an inducible manner suggesting a direct role of SLAP in the regulation of FLT3 signaling. Phosphoflow analysis of DCs generated in the combined presence of GMCSF and FLT3 ligands showed that SLAP promotes the signaling to SHP2 while perturbs signaling to the mTOR pathway. Together these results suggest that SLAP is a critical regulator of CD103+DCs homeostasis in selective peripheral organs including the lung. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4991-4991
Author(s):  
Neda Mosakhani ◽  
Mohamed El Missiry ◽  
Emmi Vakkila ◽  
Päivi Heikkilä ◽  
Sakari Knuutila ◽  
...  

Abstract In several adult solid cancers the presence or absence of an inflammatory microenvironment has turned out to be an important prognostic factor. Acute lymphoblastic leukemia (ALL) is seen in both adults and children but the response to chemotherapy and survival is significantly worse in adults than children. Therefore, we wanted to study whether the expression of immune system associated molecular markers would be different in adult and pediatric ALL patients at the time of diagnosis. IDO and FOXP3 were studied from paraffin embedded tissue samples by immunohistochemistry in 12 pediatric and 10 adult bone marrow samples. Inflammation associated miRNA analysis were performed in 19 adult and 79 pediatric ALL patients and involved miR-10, miR-15, miR-16, miR-17-92 cluster, miR-33, miR-146a, miR-150, miR-155, miR-181a, miR-222, miR-223, and miR-339. miRNAs were first analysed by Agilent's miRNA microarray and thereafter validated by qRT-PCR. miRNAs not expressed in at least 75% of one group of samples were excluded. Significance (p <0.05; q<0.1) of differential expression was estimated by t-test for those miRNAs with at least a 2.0 fold change. Sufficient RNA for qRT-PCR was available for 42 pediatric and 19 adult patients. The adult and pediatric ALL patients had quantitatively and qualitatively similar expression of IDO and FOXP3 in leukemic bone marrow samples (p=0.26 and 0.74, respectively). Out of studied miRNAs only miR-18a differed significantly in microarray analysis between adult and pediatric ALL being lower in children (FC -3.74; p 0,0037). Results were confirmed by qRT-PCR (upregulated in adults, FC 3.71, p 0.003161). The other members of the miR-17-92 cluster did not differ significantly. We conclude that pediatric and adult ALL patients have remarkably similar pattern of immune cell associated markers in bone marrow at diagnosis. This is in line with recent evidence that the outcome of the adult ALL patients can be significantly improved if treated with pediatric protocols. However, the low expression of miR-18a in pediatric ALL is interesting and demands further studies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4291-4291 ◽  
Author(s):  
Sonny Ang ◽  
Maria Lima Da Silva ◽  
Margaret Dawson ◽  
Matthew Figliola ◽  
Sourindra Maiti ◽  
...  

Abstract Abstract 4291 Natural Killer (NK) cells have important and potent innate immunoregulatory and immune surveillance functions against tumor. The paradoxical coexistence of tumors and anti-tumor immune cells (“Hellstrom Paradox”) may in part be explained by the pathophysiology of the “hostile” tumor microenvironment which suppress immune-cell function, such as hypoxia, low pH, low tissue glucose, and the presence of immunosuppressive cytokines and metabolites. However, the effect of the malignant environment on the ability of NK cells to infiltrate tumor and exhibit effector function is largely unknown. Therefore, we investigated the ability of NK cells to operate under conditions of hypoxia. Importantly, NK cells showed a 1,000-fold reduction in proliferative capacity when grown under chronic hypoxia (4 weeks of 1% O2). In addition, there was a corresponding decrease in cytotoxicity as revealed by chromium release assay. This was in contrast to autologous T cells which could numerically expand under corresponding growth conditions. Expression profiling uncovers profound upregulation of hypoxia-inducible genes such as EGLN1(9.9x), EGLN3(52x), LDHA(11.5x), SLC2A1(30.5x), PDK1(16.8x), VEGFA(286x) and BNIP3(138x) in hypoxic NK cells. Protein expression confirmed these changes, as NK cells under normoxic culture produced 520 nmoles/million cells of ATP, while those under hypoxic culture managed only 100 nmoles/million cells. This is consistent with a bioenergetic switch from oxidative phosphorylation to glycosis resulting from PDK1 upregulation. NK cells in hypoxia produced 61 pg/mL of VEGF compared to 1480 pg/mL for NK cells in normoxia (20% O2), as determined by ELISA. The inability of NK cells to propagate under conditions of hypoxia may be due to a drop in mitochondrial content we observed when cells were exposed to chronic hypoxia, a potential mitophagic effects of BNIP3 upregulation. In addition to the poor proliferative capacity of NK cells under hypoxia, we also noted the loss of CD56 expression on hypoxic NK cells which is associated with loss of cytotoxicity. Sequence analysis reveals that miR-210 can bind to the 3′UTR of CD56 mRNA, targeting it for degradation. Therefore, we investigated whether miR-210 levels are upregulated in hypoxic NK cells and found that increased presence correlated with loss of CD56 expression. This leads to the conclusion that NK-cell immunotherapy may be improved by downregulating miR-210 levels. Indeed, our findings help shape strategies for obtaining robust and sustained NK-cell effector function for adoptive immunotherapy in the hypoxic tumor microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5540-5549 ◽  
Author(s):  
Sherine F. Elsawa ◽  
Anne J. Novak ◽  
Steven C. Ziesmer ◽  
Luciana L. Almada ◽  
Lucy S. Hodge ◽  
...  

Abstract Although proinflammatory and chemotactic cytokines can profoundly affect the tumor microenvironment, and many of them have been shown to have therapeutic efficacy in preclinical models, the role of these molecules in Waldenström macroglobulinemia (WM) remains poorly understood. In this study, simultaneous analysis of WM patient sera and bone marrow biopsies identified a set of dysregulated cytokines including CCL5, G-CSF, and soluble IL-2 receptor, that were significantly elevated in WM patients whereas IL-8 and EGF levels were significantly lower in these patients compared with healthy controls. Interestingly, CCL5 levels positively correlated with features of disease aggressiveness such as elevated IgM levels and bone marrow involvement. Functional analysis of tumor microenvironment revealed a functional correlation between CCL5 levels and IL-6 levels, a proinflammatory cytokine with an important role in normal and malignant B-cell biology. Furthermore, CCL5 stimulated IL-6 secretion in WM stromal cells resulting in increased IgM secretion by WM malignant cells via the JAK/STAT signaling pathway. Thus, together these results define a novel signaling network in the WM tumor microenvironment controlling IgM secretion and suggest CCL5 as a potential target for the treatment of this disease.


Sign in / Sign up

Export Citation Format

Share Document