A Single-Centre Series of 40 Patients with Bone-Marrow Biopsy-Defined Large Granular Lymphocyte Leukemia; High Rates of Sustained Response to Oral Methotrexate

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3937-3937
Author(s):  
Christopher Fox ◽  
Talha Munir ◽  
Ian Carter ◽  
Sturch Elaine ◽  
Faith Richardson ◽  
...  

Abstract Abstract 3937 Large granular lymphocyte (LGL) leukaemia is a rare lymphoproliferation originating in activated cytotoxic CD8+ T cells or occasionally NK cells. Published series incorporating 40 or more patients are few in number with some differences in diagnostic definitions, making comparisons between studies challenging. Investigators have chiefly relied on peripheral blood for diagnosis; typically defined as a persistent excess (>0.5×109/l) of LGLs, associated with monoclonal T-cell receptor (TCR) gene rearrangements by PCR. However, benign monoclonal CD8+T-cell expansions, phenotypically indistinguishable from T-LGL, are well recognised in both healthy elderly individuals and those with autoimmune disease. To-date, reported response rates to oral Methotrexate (MTX) have been in the order of 40–60%, with MTX-failure reportedly occurring in two-thirds of patients after 1 year of follow-up. We studied 40 patients diagnosed with LGL leukemia at Nottingham University Hospitals NHS Trust, UK, between 1990 and 2011. All patients had a persistent (>6 months) large granular lymphocytosis and, importantly, 97.5% (39/40) patients had undergone a bone marrow (BM) biopsy. In all cases an interstitial infiltrate of cytotoxic T cells and/or NK cells, typically demonstrating characteristic linear arrays, established the diagnosis. A majority of patients had correlative peripheral blood PCR studies confirming clonal TCR gene rearrangements in 80%. Although 5 patients had a polyclonal TCR gene, for all such patients the BM findings (>20% LGLs in some cases) together with clinical context (neutropenia, lymphocytosis and 2 cases of pure red cell aplasia (PRCA)) established the diagnosis of LGL leukemia. The median age at diagnosis was 66 years (21–90 years), with an equal sex distribution. The median total lymphocyte count at clinical presentation was 2.7×109/l (0.7–9.4 x109/l) and a lymphocyte count of ≥2×109/l was seen in 27 patients (68%). Thirty patients (75%) were neutropenic at diagnosis (median neutrophil count 0.9 x109/l (range 0.0–6.5 x109/l). In 13 cases neutropenia was accompanied by anemia, thrombocytopenia or both. Rheumatoid factor was positive in 11 of 27 assessable cases (41%), whilst 11 of 40 (28%) had associated autoimmune clinical disorders, including Rheumatoid arthritis (n=6). With a median follow-up for living patients of 3.2 years (range 1.0–15.1 years), 15 patients (38%) have never required treatment. One further patient was already established on MTX at LGL diagnosis. Treatment was not required in any patients who presented with an isolated, asymptomatic lymphocytosis (n=8, 20%). The median time from diagnosis to treatment was 2.1 months; all treatment-requiring patients needed therapy within 6 months of presentation. Treatment was indicated in 24 patients: neutropenia and recurrent infections (n=8); severe neutropenia (n=6); cytopenias associated with other symptoms (mouth ulcers, skin lesions, organomegaly) (n=8); and PRCA (n=2). MTX (10mg/m2, weekly) was employed as first-line therapy (n=9) and after failure of Prednisolone (0.5–1mg/kg) monotherapy (n=7). Amongst 16 MTX-treated patients, 14 (87.5%) achieved a haematological PR (n=6) or CR (n=8) after a median of 2.5 months (1–9 months). (Improvements in quality of response) Continuing responses (haem-PR to CR) were seen up to 2yrs after starting MTX (of MTX). Notably, for the 14 MTX-responders the median duration of response was 6.5 years (0.3–16), censoring for death and drug-cessation due to patient choice. Neither of the 2 patients with PRCA responded to MTX, but Ciclosporin and Fludarabine were effective salvage therapies for MTX-failures. This is one of the largest single-centre series of LGL leukemia reported to-date. The strengths of our study include robust diagnostic evidence of LGL leukemia including BM biopsy and a long follow-up duration. By contrast to the published data, we describe high rates of response to MTX in both steroid-exposed and naive patients. Time to response exceeded 4 months in some cases and responses were sustained for >5 years in a majority of patients. The role of MTX in LGL leukemia warrants further study. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Weihong Chen ◽  
Xin Du ◽  
Wenyujing Zhou ◽  
Changru Luo ◽  
Xiaoqing LI

CASE PRESENTATION: A 68-year-old male was diagnosed with CLL/SLL in November 2007. Bone marrow asp/bx: 36.5% lymphocytes, 78% CD19, 65% ATM (11q22 deleted) positive cells, 13.5% D13S25 (13q14.3 deleted). On December 10, 2009, the patient took FCR scheme for five cycles, followed by FR scheme for one cycle, and then a month of Chlorambucil. On September 5, 2013, the patient took BR scheme for four cycles with no effect. From March 2015 to Feb 2016, 420 mg of Ibrutinib was administered daily. On January 15, 2016, the patient developed swollen lymph nodes in his right neck with intermittent lumps, fever and nausea. He was admitted into the hospital at Feb 2, 2016. Test results: multiple swollen superficial lymph nodes over the body, with the biggest measuring 60×30mm on the right neck, with no tenderness. Supplementary tests: peripheral white blood cells (WBC) 11.94×10E9/L, lymphocyte 7.5×10E9/L, CD19 cells 6.73×10E9/L, bone marrow lymphocyte 62%, peripheral blood lymphocyte 52%. Immunophenotype: CD5, CD19, CD20dim, CD23, CD11b dim, HLA-DR expression, visible CD5+CD19+ cell clusters, and visible immunoglobulin cKappa with restricted expression. On March 10, 2016, peripheral blood platelet 60 × 10E9/L, CD19 cells 1.94×10E9/L, lactate dehydrogenase 460U/L, FER 115.6ng/ml, hepatitis B virus carrier. Diagnosis: CLL/SLL IV stage, ATM (11q22) deletion, D13S25 (13q14. 3) positive, CD19 positive. Relapse of CLL/SLL occurred again after four months and at this stage the patient was considered for therapy in a clinical trial of CD19-specific chimeric antigen receptor (CAR-) T cell therapy. Ethical approval and informed consent were obtained for anti-CD19 CAR T Cell treatment of ibrutinib resistance in relapsed/refractory CLL/SLL. We infused autologous T cells transduced with a CAR T 19 retroviral vector with CLL/SLL at doses of 3.3 × 10E8 CART19 cells on Mar. 16 2016. Patients were monitored for responses, toxic effects, and the expansion and persistence of circulating CART19 cells. After CART19 cells were infused, the patient experienced chills, fever, headache, weak, anorexia, nausea, shortness of breath, chest tightness, heart palpitation, hypotension and shock for 9 days. The serum levels of IFN-Υ were at their highest at day 7 after CAR T cells infusion. Serum interleukin 6 (IL-6) was at 680pg/ml and CD3+ cells were 97.5%, CD8+ cells 72.8% (18.7-32.8%), FER was 1529.5ng/ml (Normal No. 22-322ng/ml) 14 days after CAR-T cell infusion. The serum levels of IL-6 were at their highest at day14. The patient was diagnosed as having cytokine release syndrome. After the patient took the anti-IL-6R antibody and anti-TNF antibody, he began to recover gradually. Enlarge lymph nodes shrunk after being infused with CART19 cells for 7 days. The peripheral blood CD19 B lymphocytes were 0 on day 14 after infused with CAR T19 cells. Q-PCR was used to detect the amount of the peripheral blood CART19 cells, which stood at 5485 copies/μl, 924 copies/μl, 191 copies/μl respectively 2 weeks, 6 weeks and 3 months after infusing with CART19 cells. The peripheral blood CART 19 cells were not detectable 4 months after infusing with CART19 cells until present. The lymphadenopathy was decreased gradually after 14 days of infusion. The MRI test showed that lymphadenopathy reduced markedly or disappeared after 6 months of infusion. ATM (11q22 deleted) negative, D13S25 (13q14.3 deleted) negative. After treatment with CAR T 19 cell therapy for 53 months, the patient remained disease-free, the patient's lymph nodes, lymphocytes and I mmunoglobulins were normal. CONCLUSIONS : Cancer immunotherapy as a method of cancer treatment is the most effective after conventional treatments such as radiotherapy, chemotherapy, and surgery. For BTK Inhibitor resistance in relapsed and refractory CD19+ CLL/SLL, CD19 is a favorable target, because the expression of CD19 is limited to B cells and not present in other tissues or cells. Currently, the efficacy of this treatment in treating CLL/SLL remains to be seen. The effects of chemotherapy on the patient's B cell lymphoma are negligible, due to the fact that his CLL/SLL have become relapsed and refractory. As a result we chose the CAR T19 cell therapy genetic engineering technique as a method of treatment, to which the patient has responded well. Therefor, CAR T cell technology overcome the limitations of existing cancer therapies and has great potential for development and application. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1196-1200 ◽  
Author(s):  
A Velardi ◽  
A Terenzi ◽  
S Cucciaioni ◽  
R Millo ◽  
CE Grossi ◽  
...  

Abstract Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two- color immunofluorescence analysis. CD4+ and CD8+ T cells reached normal or near-normal values within the first year posttransplant. In contrast to normal controls, however, most of the cells in both subsets coexpressed the Leu7 and CD11b markers. T cells with such phenotype display the morphological features of granular lymphocytes (GLs) and a functional inability to produce interleukin 2 (IL 2). These T cell imbalances were not related to graft v host disease (GvHD) or to clinically detectable virus infections and may account for some defects of cellular and humoral immunity that occur after bone marrow transplantation./


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1595-1603 ◽  
Author(s):  
K Welte ◽  
CA Keever ◽  
J Levick ◽  
MA Bonilla ◽  
VJ Merluzzi ◽  
...  

Abstract The ability of peripheral blood mononuclear cells (PBMC) to produce and respond to interleukin-2 (IL-2) was evaluated in 50 recipients of HLA- identical bone marrow (BM) depleted of mature T cells by soybean agglutination and E rosetting (SBA-E-BM). In contrast to our previous findings in recipients of unfractionated marrow, during weeks 3 to 7 post-SBA-E-BM transplantation (BMT), PBMC from the majority of patients spontaneously released IL-2 into the culture medium. This IL-2 was not produced by Leu-11+ natural killer cells, which were found to be predominant in the circulation at this time, but by T11+, T3+, Ia antigen-bearing T cells. The IL-2 production could be enhanced by coculture with host PBMC frozen before transplant but not by stimulation with mitogenic amounts of OKT3 antibody, thus suggesting an in vivo activation of donor T cells or their precursors by host tissue. Spontaneous IL-2 production was inversely proportional to the number of circulating peripheral blood lymphocytes and ceased after 7 to 8 weeks post-SBA-E-BMT in most of the patients. In patients whose cells had ceased to produce IL-2 spontaneously or never produced this cytokine, neither coculture with host cells nor stimulation with OKT3 antibody thereafter induced IL-2 release through the first year posttransplant. Proliferative responses to exogenous IL-2 after stimulation with OKT3 antibody remained abnormal for up to 6 months post-SBA-E-BMT, unlike the responses of PBMC from recipients of conventional BM, which responded normally by 1 month post-BMT. However, the upregulation of IL- 2 receptor expression by exogenous IL-2 was found to be comparable to normal controls when tested as early as 3 weeks post-SBA-E-BMT. Therefore, the immunologic recovery of proliferative responses to IL-2 and the appearance of cells regulating in vivo activation of T cells appear to be more delayed in patients receiving T cell-depleted BMT. Similar to patients receiving conventional BMT, however, the ability to produce IL-2 after mitogenic stimulation remains depressed for up to 1 year after transplantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1373-1373
Author(s):  
JianXiang Zou ◽  
Jeffrey S Painter ◽  
Fanqi Bai ◽  
Lubomir Sokol ◽  
Thomas P. Loughran ◽  
...  

Abstract Abstract 1373 Introduction: LGL leukemia is associated with cytopenias and expansion of clonally-derived mature cytotoxic CD8+ lymphocytes. The etiology of LGL leukemia is currently unknown, however, T cell activation, loss of lymph node homing receptor L-selectin (CD62L), and increased accumulation of T cells in the bone marrow may lead to suppressed blood cell production. The broad resistance to Fas (CD95) apoptotic signals has lead to the hypothesis that amplification of clonal cells occurs through apoptosis resistance. However, the proliferative history has not been carefully studied. To define possible mechanism of LGL leukemia expansion, T cell phenotype, proliferative history, and functional-related surface marker expression were analyzed. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from 16 LGL leukemia patients that met diagnostic criteria based on the presence of clonal aβ T cells and >300 cells/ml CD3+/CD57+ T cells in the peripheral blood. Samples were obtained from 10 age-matched healthy individuals from the Southwest Florida Blood Services for comparisons. Multi-analyte flow cytometry was conducted for expression of CD3, CD4/8, CD45RA, CD62L, CD27, CD28, CD25, CD127, IL15Ra, IL21a, CCR7 (all antibodies from BD Biosciences). The proliferative index was determined by Ki67 expression in fixed and permeabilized cells (BD Biosciences) and the proliferative history in vivo was assessed by T-cell-receptor excision circle (TREC) measurement using real-time quantitative PCR (qRT-PCR) in sorted CD4+ and CD8+ T cells. TRECs are episomal fragments generated during TCR gene rearrangements that fail to transfer to daughter cells and thus diminish with each population doubling that reflects the in vivo proliferative history. Results: Compared to healthy controls, significantly fewer CD8+ naïve cells (CD45RA+/CD62L+, 8.4 ± 10.8 vs 24.48 ± 11.99, p=0.003) and higher CD8+ terminal effector memory (TEM) T cells (CD45RA+/CD62L-, 67.74 ± 28.75 vs 39.33 ± 11.32, p=0.007) were observed in the peripheral blood. In contrast, the percentage of CD4+ naïve and memory cells (naïve, central memory, effector memory, and terminal effector memory based on CD45RA and CD62L expression) was similar in patients as compared to controls. The expression of CD27 (31.32 ± 34.64 vs 71.73 ± 20.63, p=0.003) and CD28 (31.38 ± 31.91 vs 70.02 ± 22.93, p=0.002) were lower in CD8+ T cell from patients with LGL leukemia and this reduction predominated within the TEM population (17.63±24.5 vs 70.98±22.5 for CD27, p<0.0001 and 13±20.5 vs 69.43± 21.59 for CD28, p<0.0001). Loss of these markers is consistent with prior antigen activation. There was no difference in CD25 (IL2Ra, p=0.2) expression on CD4+ or CD8+ T cells, but CD127 (IL7Ra, p=0.001), IL15Ra, and IL21Ra (p=0.15) were overexpressed in TEM CD8+ T cell in patients vs controls. All of these cytokine receptors belong to the IL2Rβg-common cytokine receptor superfamily that mediates homeostatic proliferation. In CD8+ T cells in patients, the IL-21Ra was also overexpressed in naïve, central and effector memory T cells. The topography of the expanded CD8+ T cell population was therefore consistent with overexpression of activation markers and proliferation-associated cytokine receptors. Therefore, we next analyzed Ki67 expression and TREC DNA copy number to quantify actively dividing cells and determine the proliferative history, respectively. We found that LGL leukemia patients have more actively dividing CD8+ TEM T cells compared to controls (3.2 ± 3.12 in patients vs 0.44 ± 0.44 in controls, p=0.001). Moreover, the TREC copy number in CD8+ T cells was statistically higher in healthy individuals after adjusting for age (177.54 ± 232 in patients vs 1015 ± 951 in controls, p=0.019). These results show that CD8+ cells in the peripheral compartment have undergone more population doublings in vivo compared to healthy donors. In contrast, the TREC copies in CD4+ T-cells were similar between LGL patients and controls (534.4 ± 644 in patients vs 348.78 ± 248.16 in controls, p>0.05) demonstrating selective cellular proliferation within the CD8 compartment. Conclusions: CD8+ T- cells are undergoing robust cellular activation, contraction in repertoire diversity, and enhanced endogenous proliferation in patients with LGL leukemia. Collectively, these results suggest that clonal expansion is at least partially mediated through autoproliferation in T-LGL leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2803-2803
Author(s):  
Xiaohui Zhang ◽  
Lynn Moscinski ◽  
John M. Bennett ◽  
Reza Setoodeh ◽  
Deniz Peker ◽  
...  

Abstract Abstract 2803 Myelodysplastic syndrome (MDS) and T-cell large granular (T-LGL) leukemia are both bone marrow failure disorders. It has been reported in a small number of cases that clonal T-LGL proliferation or leukemia can coincidentally occur with MDS. Also, clonal CD8+/CD57+ effector T cells expansion was detected in as many as 50% of MDS bone marrows [Epling-Burnette, 2007]. How clonal LGL cells that reside in the bone marrow interfere with hematopoiesis remains unclear, particularly in the setting of MDS. We analyzed the clinicopathological features of concomitant MDS and T-LGL, and evaluated bone marrow status for lineage or pan-hypoplasia in these patients. Design: Clinical and pathologic data from patients with a diagnosis of MDS and flow cytometry performed on the peripheral blood between 1/2005 and 12/2009 were reviewed. The concurrent bone marrow biopsies from each patient at the time of flow cytometric analysis were reviewed by two hematopathologists. Bone marrow cellularity, lineage hypoplasia (M:E >5: 1 or <1:2) were documented. Peripheral lymphocyte count and CD3+/CD57+ and CD8+/CD57+ populations by flow cytometry were calculated and T cell gene receptor (TCR) rearrangements were correlated. Results: We performed LGL flow cytometry panel on 76 MDS patients (high grade MDS, n=23; low grade, n=54), as well as TCR gene rearrangements, and identified clonal T-LGL cells in peripheral blood of 37 patients (48.7%), including 15 high grade MDS (40.5%, RAEB-I and RAEB-II), and 22 low grade MDS (59.4%), including RCMD(13), RA(1), RS(1), RCMD-RA(1), RCMD-RS (2), 5q- MDS(1), and MDS unclassifiable(3). The immunophenotype of the T-LGL cells was typically CD3+/CD57+/CD7 dim+/CD5 dim+/CD8+ with variable CD11b,CD11c, CD16, CD56 and HLA-DR. A frequent variant in these MDS patients was CD11b-,CD11c -, CD16+/−, CD56+/−, HLA-DR- and CD62L+.The TCRβ or/and TCRγ gene rearrangements were positive in 35 of the 38 cases (92.1%). The peripheral blood lymphocyte counts were 300–3820 cells/μL (1199±799 cells/μL); the CD3+/CD8+/CD57+ T-LGL cell counts were 30–624 cells/μL (229±154 cells/μL). In comparison, the remaining 39 patients with non-clonal T-LGL included 11 high grade MDS cases, and 28 low grade MDS cases. The peripheral blood lymphocyte counts were 308–2210 cells/μL (1030±461 cells/μL). CD3+/CD57+ cells were 1–425 cells/μL (105±98 cells/μL). There was no identifiable phenotypic features suggestive of clonal T-LGL cells such as dim CD5 and/or dim CD7 with aforementioned aberrant expressions on T-cells, although 7 of the 39 cases had TCRβ or/and TCRγ gene rearrangements. Thirty healthy donors were included for controls with absolute lymphocyte counts of 2136±661 cells/μL and baseline CD3+/CD57+ cells of 162±109 cells/μL. All showed no clonal LGL phenotype and negative TCR gene rearrangements. Since the presence of T-LGL cells may impair bone marrow hematopoiesis, we examined if there are bone marrow status differences between these two groups. All the bone marrows were obtained at diagnosis or not on chemotherapy. The bone marrow cellularity of the MDS patients with clonal T-LGL ranged from <3% to almost 100%, averaging 56%, with 8 cases with dramatic hypocellularity (<3%-20%), while the bone marrow cellularity of the MDS patients without clonal T-LGL ranged from 20% to 90%, averaging 62%, with only 2 cases with mild hypocellularity (20% in 73- and 65-year-old). In addition, among MDS patients with clonal T-LGL cells, 14 of 37 (37.8%; 5 high grade, and 9 low grade) bone marrows had certain lineage hypoplasia, including 3 cases of trilineal hypoplasia, 9 cases of erythroid hypoplasia, and 2 cases of myeloid hypoplasia. In contrast, among 39 MDS patients without T-LGL, there were only 1 bone marrow with trilineal hypoplasia and 3 others with erythroid hypoplasia (10.2%). The difference between the two groups was statistically significant (p=0.004, chi square test). In conclusion, our studies indicate that clonal T-LGL cells expansion is a fairly common finding in high grade as well as low grade MDS. The clonal T-LGL cells have more than one variant immunophenotypes and are typically positive for TCR gene rearrangements. Additionally, we observed that the clonal LGL cells present in MDS bone marrows could be associated with lineage hypoplasia, which, in this respect, might impact clinical treatment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1149-1157 ◽  
Author(s):  
JE Leonard ◽  
R Taetle ◽  
D To ◽  
K Rhyner

Abstract Whole-ricin immunoconjugates were synthesized with the pan-T cell antibodies T101 and 3A1 and assayed in the presence of 0.1 mol/L lactose. Their toxicity for cell lines, peripheral blood T lymphocytes, and normal bone marrow progenitors was compared with that of whole ricin. In the presence of 0.1 mol/L lactose, normal cells and cell lines exhibited the following sensitivities to ricin: 8392 (human malignant B cell line) less than E rosette-positive lymphocytes less than bone marrow progenitors less than 8402 (human T ALL) less than CEM (human T ALL). Ricin sensitivities correlated with ricin binding as determined by immunofluorescence. In the presence of lactose, peripheral blood T cells were resistant to 0.1 nmol/L ricin, but a similar concentration of T101-ricin inhibited normal and malignant T colony formation by greater than 98%. 3A1-ricin was slightly less effective. At a conjugate concentration of 0.1 nmol/L, bone marrow progenitor colony formation was inhibited by 30% or less; T101-positive cells were at least tenfold more sensitive than normal progenitors. When mixtures of 10% CEM cells and marrow cells were incubated with T101-ricin, 95% of CEM colonies were killed, and 96% of marrow granulocyte/ macrophage progenitors survived. Some free ricin was released from immunotoxin-treated cells, producing minimal inhibition of protein synthesis or cell growth. We conclude that (a) normal blood cells and malignant cell lines exhibit varying degrees of ricin sensitivity in the presence of lactose; (b) T101-ricin is at least tenfold more toxic to T lymphocytes than to bone marrow progenitor cells and is effective in mixtures of normal and malignant cells; and (c) treatment of infiltrated marrow with anti-T cell immunotoxins should safely remove target T cells without excessively damaging normal progenitors or producing excessive free ricin. Anti-T cell, whole-ricin immunotoxins merit trials for autologous transplantation.


2010 ◽  
Vol 2 (2) ◽  
pp. e2010028 ◽  
Author(s):  
Mark E. Johns ◽  
Lynn C. Moscinski ◽  
Lubomir Sokol

We report a case of phenytoin-induced pseudolymphoma in a 28-year-old male with a history of autism and seizure disorder.  The patient presented with bilateral cervical lymphadenopathy that was shown to be moderately to markedly FDG-avid on a whole body PET/CT scan.  Flow cytometry analysis of peripheral blood and bone marrow mononuclear cells detected identical T cell population with aberrant immunophenotype.  Additionally, a TCR beta gene was found to be clonally rearranged in both peripheral blood and bone marrow supporting a clonal origin of atypical T cells. However, no such clonal population of T-cells could be detected in a pathologic specimen obtained from an excisional biopsy of one of the patient’s cervical lymph nodes. After discontinuing the patient’s phenytoin, his lymphadenopathy has nearly completely resolved and circulation clonal T cell population disappeared with 12 months of follow-up.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 104-110 ◽  
Author(s):  
AH Galy ◽  
S Webb ◽  
D Cen ◽  
LJ Murray ◽  
J Condino ◽  
...  

Abstract The present study compared the T-cell progenitor content of CD34+ lineage (Lin)- cells isolated from normal adult bone marrow (ABM) and mobilized peripheral blood (MPB). Both cell populations were found to differentiate into T cells when injected into human fetal thymi implanted into severe combined immunodeficient mice. Cytokine-MPB cells were less efficient than ABM cells in engrafting in the fetal human thymus, although both gave rise to thymocytes with identical phenotypes based on the analysis of CD1a, CD3, CD4, and CD8 expression. Thymocytes derived from adult CD34+ Lin- cells were capable of fully differentiating into mature CD3+ T cells expressing either the T-cell receptor (TCR) gamma delta or the TCR alpha beta (the later associated with CD4 or CD8), showing that the T-cell progenies of adult CD34+ cells were polyclonal and functional. Our data indicate that human MPB CD34+ cells are qualitatively identical to their BM counterparts, and demonstrate the existence of T-lymphoid progenitor cell activity in MPB.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8505-8505 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Deepu Madduri ◽  
Saad Zafar Usmani ◽  
Indrajeet Singh ◽  
Enrique Zudaire ◽  
...  

8505 Background: JNJ-68284528 (JNJ-4528) is a chimeric antigen receptor T (CAR-T) cell therapy containing 2 BCMA-targeting single-domain antibodies. Here we present updated CARTITUDE-1 (NCT03548207) phase 1b results with longer follow-up. Methods: Pts had MM per IMWG criteria, measurable disease, received ≥3 prior regimens or were double refractory to a PI and IMiD, and received anti-CD38 antibody. Cyclophosphamide 300 mg/m2+ fludarabine 30 mg/m2 over 3 days were used for lymphodepletion. JNJ-4528 (median, 0.73x106 CAR+ viable T cells/kg) was given as a single infusion. Cytokine release syndrome (CRS) was graded by Lee et al2014 and neurotoxicity by CTCAE, v5.0 and ASTCT grading. Response was assessed per IMWG criteria. Results: As of 17 Jan 2020, median follow-up is 9 mo (3–17). Phase 1b enrollment is complete (N = 29 treated; median 5 (3–18) prior lines, 76% penta-exposed, 86% triple-refractory, 31% penta-refractory, 97% refractory to last line of therapy). Most frequent adverse events (AEs) were neutropenia (100%), CRS (93%), and thrombocytopenia (93%). Grade (Gr) ≥3 hematologic AEs were neutropenia (100%), thrombocytopenia (69%), and leukopenia (59%). 27 (93%) pts had CRS; 25 Gr 1–2, 1 Gr 3, and 1 Gr 5 (day 99 subsequent to dose-limiting toxicity of prolonged Gr 4 CRS). Median time to onset of CRS was 7 days (2–12). 4 pts had treatment-related neurotoxicity: 3 Gr 1–2 and 1 Gr 3. ORR was 100%, with 22 (76%) stringent complete responses (sCRs), 6 (21%) very good partial responses (VGPRs), and 1 (3%) PR. Median time to ≥CR was 2 mo (1–9). 26/29 pts are progression-free, with 6-mo progression-free survival rate of 93% and longest response ongoing at 15 mo. 1 death due to CRS and 1 to acute myeloid leukemia (not treatment-related) occurred during the study. All 16 pts (14 sCR, 2 VGPR) evaluable at 6 mo were minimal residual disease negative at 10−5 or 10−6. JNJ-4528 CAR+ T cell expansion peaked between day 10–14. At 6-mo individual follow-up, 22/28 pts had JNJ-4528 CAR+ T cells below the level of quantification (2 cells/µL) in peripheral blood, suggesting CAR-T persistence in peripheral blood did not seem to correlate with deepening of response. At peak expansion, preferential expansion of CD8+ CAR-T cells with a central memory phenotype was observed in peripheral blood. Conclusions: JNJ-4528 treatment led to responses in all pts. These responses were early, deep, and durable at a low dose of CAR-T cells with 26/29 (90%) pts progression free at median 9-mo follow-up. CRS was manageable in most pts, supporting outpatient dosing. Clinical trial information: NCT03548207 .


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 748-748
Author(s):  
Pearlie K Epling-Burnette ◽  
Ying Han ◽  
Adam W Mailloux ◽  
Ling Zhang ◽  
Jessica M. McDaniel ◽  
...  

Abstract Background Durable responses to lenalidomide (LEN, an immunomodulatory drug, IMiDTM) occur in both non-del5q and del5q Myelodysplastic Syndrome (MDS). In non-del5q MDS and multiple myeloma, modulation of the bone marrow microenvironment by an unknown mechanism has been theorized. IMiDs initiate numerous effects on the immune system, some of which may induce an anti-leukemic and anti-inflammatory response. The connection between the drug's immune modulating activity and its hematopoietic stimulatory activity in MDS is currently untested. We and others have shown that LEN expands T-cells and increases IL-2 (p<0.001) by substituting for CD28 co-stimulation. In support of this, we found that LEN activates a CD28-specfic transcription factor pCREB in the absence of extracellular ligation of the CD28 receptor suggesting that it is acting to suppress a pharmacologic target that is involved specifically in costimulatory signaling. Normally, several negative regulators provide immunotolerance to T-cells to limit self-reactivity and protect against autoimmune disease. Anti-cancer immunosurveillance is often circumvented through acquired resistance to costimulation. Methods The critical role of immune modulation in LEN-induced hematologic response was examined by testing the performance of a predictive biomarker in patients stratified by del5q status in a training cohort and in a blinded validation cohort. Molecular analyses were performed on sorted populations of cells and knock-down of genes in normal human T-cells. Finally, we demonstrate the relevance of cereblon, a molecular target of LEN, in the negative regulation of costimulatory CD28 signaling using a homozygous germline knockout mouse. Results Comparison of sorted CD28+CD8+ and CD28-CD8+ human T-cells illustrates the importance of the expression of this receptor in LEN-induced T-cell activation. CD28- T-cells were found to be resistant to LEN. Accumulation of CD28- cells is a form of accelerated immunosenescence that is often associated with cancer and has been reported in MDS. To determine if CD28- T-cell accumulation is associated with LEN hematopoietic outcome in patients, we performed T-cell profiling before treatment in a training cohort (n=21) and a blinded validation cohort (n=35). Of the T-cell markers studied, a higher percentage of CD28- T-cells was associated with LEN hematopoietic failure in the training cohort (p=0.001). Using a R-Part-defined cutoff of CD28+ vs CD28- T-cells, the biomarker sensitivity was found to be 86%, specificity 82%, positive predictive value (PPV) 67%, and negative PV (NPV) 93% in non-del5q MDS patients, but did not improve response discrimination in del5q MDS. The association between CD28 and LEN response led us to hypothesize that the molecular target of LEN is involved in signaling by the CD28 receptor. A landmark study identified cereblon (CRBL), a RING-domain E3-Ubiquitin Ligase (UbL) to be the primary target of thalidomide and LEN. To examine the effect of CRBL on CD28 signaling, germ-line crbl knock-out mice (crbl-/-) were examined compared to wild-type (WT) C57BL6 mice. We found that crbl deficiency augments T-cell proliferation (Fig. 1A) and contextual activation of IL2 in the absence of CD28 co-stimulation similar to LEN. Examination of the bone marrow, thymus, and peripheral blood shows that crbl is a negative regulator of lymphopoiesis in the spleen and thymocyte with increased peripheral blood lymphocyte counts (Fig. 1B) and increased double negative (DN)-1 (P=0.01), DN3 (p=0.03), and reduced DN4 (p=0.005) thymocytes in crbl-/- compared to WT mice. Conclusions Our results indicate that immune reconstitution mediated by T-cell CD28 signaling is important for hematologic response in non-del5q MDS, but not del5q MDS, and is consistent with different molecular mechanisms of action in these two groups of patients. LEN may improve T-cell function by directly suppressing CRBL a novel E3-UbL regulator involved in lymphopoiesis, thymocyte development and CD28 co-stimulation. Our data suggests that CRBL acts similarly to the E3 UbL proteins Cbl-b, GRAIL, and ITCH that mechanistically induce immunotolerance. In response to LEN, T-cell functional activation may sustain anti-leukemic immunosurveillance or act to remove suppressive immature cell populations from the bone marrow microenvironment allowing hematologic improvement in non-del5q MDS. Disclosures: Epling-Burnette: Celgene: Research Funding. McDaniel:Celgene: Employment. List:Celgene: Membership on an entity’s Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document