A Promoting Effect Of Spleen On Disseminated Leukemia Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2594-2594
Author(s):  
Yingxu Shi ◽  
Shihui Ma ◽  
Zhipan Cao ◽  
Fang Dong ◽  
Jinhong Wang ◽  
...  

Abstract Abnormal environment not only takes part in the malignant transformation of hematopoietic cells but also has great impact on the development of hematopoietic malignancies. Leukemia cells arise from a specific environment and compete with normal cells from the beginning of leukemogenesis. Then they induce leukemic environment favorable for the outgrowth of themselves. Both bone marrow (BM) and spleen are involved and other organs are also infiltrated by leukemia cells at late stage. Splenomegaly is more frequently observed in T cell acute lymphoblastic leukemia (T-ALL), and is related to the poor prognosis of patients. However, the mechanism is not clear. In this study, we used the non-radiated Notch1-induced mouse T-ALL model to study the effects of spleen and BM environment on the early residing, malignant phenotype and dissemination of leukemia cells. The gross change of organs during the development of leukemia was analyzed and the earliest, sustained and a final 12.25±0.6802-time increase in weight could be observed in spleen. Though leukemia cells could be detected in all organs analyzed at late stage, the earliest and sustained increase was detected in spleen but not in BM. Furthermore, two-photon fluorescence microscopy analysis showed that more leukemia cells were found in spleens but not in BM within 3 days post-transplantation. These results suggested that spleen may be more important for the initiation and early development of Notch1 induced T-ALL than any other organs. In vitro transwell experiment showed that more leukemia cells migrated to lower chambers with normal spleen cells than with normal BM cells. The concentration of a panel of cytokines/chemokines in BM, spleen and peripheral blood was screened pre-transplantation or within 3 days post-transplantation. Notably, the concentration of MIP-3β was higher in spleen sample at day 0, and it increased rapidly and kept at high levels within 3 days. Further evidence showed that leukemia cells expressed basal level of CCR7 and MIP-3β, and higher level of them could be observed when leukemia cells were co-cultured with spleen cells but not BM cells. Moreover, transwell experiment confirmed that MIP-3β promoted the migration of leukemia cells. Then we study the effects of spleen environment on leukemia cells. Spleen cells were more potent to stimulate the proliferation of leukemia cells than BM cells. Leukemia cells co-cultured with spleen cells were more potent to migrate in the in vitro migration assay than those co-cultured with BM cells. Leukemia cells freshly isolated from spleen expressed higher level of both MIP-3β and CCR7. When same amount of leukemia cells were injected to mice, spleen-origin leukemia cells caused shorter life span than BM-origin leukemia cells. Therefore, spleen environment promotes the malignant phenotype of leukemia cells. In vivo experiments were then carried out to see whether splenectomy had effect on the survival of leukemia mice. The survival time of mice in either group (splenectomy pre- or post-injection of leukemia cells) was significantly longer than that in the sham group. Furthermore, distinct effects could be observed in mice groups underwent splenectomy at both early stage and late stage post-injection of leukemia cells. Moreover, less severe invasion and destruction of organ structures in thymus, lymph nodes and BM could be observed in two splenectomy groups. In summary, our work demonstrates that spleen has a promoting effect on disseminated leukemia cells. The highly expressed MIP-3β in the spleen environment recruits leukemia cells. Subsequently, spleen environment promotes the proliferation of leukemia cells, stimulates the expression of CCR7, and enhances the migration ability of leukemia cells. The removal of spleen could prolong the survival of leukemia mice. Therefore, this study provides evidence for an organ specific effect on emerging leukemia cells in vivo and has implications for developing new treatments for leukemia patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 821-821
Author(s):  
Amy Beres ◽  
Dipica Haribhai ◽  
Chelsea Tessler-Verville ◽  
Patrick Gonyo ◽  
Martin Hessner ◽  
...  

Abstract Abstract 821 Regulatory T cells defined as CD4+ and expressing the transcription factor Foxp3 have been shown to play a pivotal role in mitigating the severity of graft versus host disease (GVHD). In the course of studies designed to define the functional role of various CD4+ Treg populations in GVHD biology, we identified a novel population of CD8+ T cells that expressed Foxp3 and were induced early during this disease. While this population has been reported in patients with autoimmune disorders, the role of CD8+ Foxp3+ T cells in GVHD is unknown. To delineate the significance of this observation, we performed studies in which lethally irradiated Balb/c [H-2d] mice were transplanted with bone marrow and spleen cells from C57BL/6J [H-2b] mice that carried an EGFP reporter gene linked to Foxp3 (Foxp3EGFP). Tissues (spleen, lung, liver and colon) were harvested 5, 7, 10, 14 and 21 days post transplantation to define the temporal kinetics and absolute numbers of CD8+ Tregs during acute GVHD. We observed that CD8+ Foxp3+ T cells were detectable as early as five days post transplantation and persisted for up to three weeks in all GVHD target tissues. This cell population was present in similar percentages and absolute numbers to CD4+ Tregs in these tissue sites which is noteworthy given that the CD4+ Treg pool is comprised of two populations (natural Tregs and induced Tregs) whereas the CD8 pool is made up almost exclusively of Tregs that are induced, since only a very small percentage of CD8+ T cells from normal mice (<1.0%) constitutively express Foxp3. To determine whether the induction of CD8+ Tregs was a function of MHC disparity, we performed similar transplant studies using murine models with varying degrees of MHC incompatibility. Notably, the relative and absolute number of CD8+ Tregs were much lower in an MHC-matched, minor antigen mismatched model of GVHD [B6→Balb.B], and were absent in a model where only three amino acids distinguish donor and recipient [B6→bm1], indicating a correlation between CD8+ iTreg generation and MHC disparity between donor and host. To confirm that in vivo-induced CD8+ Tregs were suppressive, CD8+ Foxp3+ and CD4+ Foxp3+ T cells were sorted from the spleen and liver of B6→Balb/c GVHD mice six days post transplantation and examined in standard MLC suppression assays. These studies revealed that in vivo-derived CD8+ and CD4+ Tregs equally suppressed alloreactive T cell responses. Phenotypic analysis of in vivo-differentiated CD8 iTregs revealed that these cells expressed many of the same cell surface molecules as CD4+ Tregs (e.g. GITR, CD25, CD103, CTLA-4). To determine if CD8+ Foxp3+ T cells could be induced in vitro and used as adoptive therapy for GVHD prevention, purified CD8+ Foxp3EGFP– T cells were cultured with anti-CD3/CD28 antibodies, TGF-β and IL-2 for 3 days. Under these conditions, ∼30% of cells are induced to become Foxp3+. Addition of in vitro-differentiated CD8+ iTregs to a standard MLC resulted in potent suppression which was equivalent to that observed with in vitro-differentiated CD4+ Tregs. To determine whether these cells were suppressive in vivo, in vitro-differentiated CD8+ iTregs were adoptively transferred at a 1:1 Treg: effector cell ratio into lethally irradiated Balb/c mice that also received B6.PL BM and spleen cells to induce GVHD. In vitro-derived CD8+ iTregs failed to protect mice from GVHD in comparison to animals transplanted without CD8+ iTregs. This was attributable to reduced survival and the loss of Foxp3 expression in vivo. Furthermore, approximately 30–50% of these cells reverted to a proinflammatory phenotype characterized by IFN-γ secretion, similar to what has been described for in vitro-differentiated CD4+ iTregs (Beres et al, Clin Can Res, 2011). Finally, microarray studies were performed to compare the gene signatures of in vitro versus in vivo-induced CD8+ Tregs. Ontological analysis revealed that there was a 3–16 fold increase in the transcription of cytokine (e.g. IL-10) and cytotoxic (granzyme A, perforin, granzyme B) pathway genes in in vivo versus in vitro-induced CD8+ Tregs, suggesting that the former Treg population may employ similar mechanisms of suppression as has been reported for CD4+ Tregs. In summary, these studies have identified a novel population of CD8+ Foxp3+ cells that are induced early during GVHD, are able to suppress alloreactive T cell responses, and constitute another regulatory T cell population that is operative in GVHD biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5253-5253
Author(s):  
William H. Peranteau ◽  
Andrea T. Badillo ◽  
Keith Alcorn ◽  
Stephanie Filice ◽  
Alan W. Flake

Abstract Mesenchymal stem cells (MSCs) are multipotent cells of potential clinical interest given their capacity for in vitro expansion and intriguing immunologic properties. Studies using human and murine MSCs demonstrated their ability to suppress stimulated T cells in vitro. Consequently, much interest has been generated in the ability of MSCs to prevent graft versus host disease (GVHD). In fact, a limited number of case reports suggest a therapeutic role of human MSCs in the treatment of GVHD. Although encouraging, no systematic study has been performed to assess the ability of MSCs to suppress GVHD in vivo. In the current study we utilize a purified population of adult bone marrow derived murine MSCs previously shown to be immunosuppressive in vitro to evaluate the therapeutic potential in vivo of MSCs in an established model of murine GVHD. Methods: 8–12 week old C57Bl/6xBalb/c F1 mice were given 750cGy irradiation in a Cs135 gamma irradiator. 16–20 hours after irradiation, the mice received one of four groups of donor cells via lateral tail vein injection: 1) 10e6 C57Bl/6 (B6) bone marrow cells (BM) (n=5), 2) 10e6 B6 BM cells + 30e6 B6 spleen cells (n=12) (GVHD inoculum), 3) 10e6 B6 BM cells + 30e6 B6 spleen cells + 1e6 B6 MSCs (n=4) or 4) 10e6 B6 BM cells + 30e6 B6 spleen cells + 1.5e5 B6 MSCs (n=7). Mice were weighed and assessed for physical signs of GVHD such as ruffled fur, desquamation, diarrhea and hunching prior to receiving irradiation and on a weekly basis following irradiation and injection of the cellular inoculum. Results: In accordance with previous studies, the injection of 30e6 parental (B6) spleen cells combined with 10e6 (B6) parental BM cells into an F1 (B6xBalb/c) recipient following 750cGy irradiation resulted in a reliable model of GVHD. All mice receiving this inoculum demonstrated physical signs of GVHD including hunching and ruffled fur by three weeks post injection with the progression to desquamation and diarrhea by 5 weeks post injection. Similar to mice receiving the GVHD inoculum, mice receiving 30e6 B6 spleen cells + 10e6 B6 BM cells + either 1e6 B6 MSCs or 1.5e5 B6 MSCs demonstrated physical signs of GVHD by 3 weeks post injection. Control mice receiving only 10e6 B6 BM cells after 750cGy irradiation remained healthy and did not demonstrate any signs of GVHD. As demonstrated in figure 1, coinjection of either 1e6 B6 MSCs or 1.5e5 B6 MSCs with 30e6 B6 spleen cells + 10e6 B6 BM cells did not result in any significant change in weight loss compared to those mice receiving the GVHD inoculum. Similarly, the survival of mice receiving the GVHD inoculum was not improved by the coinjection of either 1e6 B6 MSCs or 1.5e5 B6 MSCs (25% vs 0% vs 28.57% at 6 weeks post injection). Conclusion: Previous studies have supported an in vitro immunosuppressive function of MSCs and a limited number of human studies have highlighted the potential ability of human MSCs to suppress GVHD. Despite these previous findings the current study demonstrates that the intravenous injection of MHC matched murine MSCs at the time of GVHD induction in an established murine model of GVHD does not affect the onset or severity of GVHD as measured by physical exam, weight loss and survival. Figure Figure


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


Nature ◽  
1968 ◽  
Vol 220 (5174) ◽  
pp. 1350-1352 ◽  
Author(s):  
H. F. JEEJEEBHOY ◽  
A. G. RABBAT

1979 ◽  
Vol 149 (6) ◽  
pp. 1371-1378 ◽  
Author(s):  
B S Kim

Normal BALB/c spleen cells are unresponsive in vitro to the phosphorylcholine (PC) determinant in the presence of anti-idiotype antibodies specific for the TEPC-15 myeloma protein (T15) which carries an idiotypic determinant indistinguishable from that of most anti-PC antibodies in BALB/c mice. The possibility that idiotype-specific suppressor cells may be generated during the culture period was examined by coculturing the cells with untreated syngeneic spleen cells. Cells that had been preincubated with anti-T15 idiotype (anti-T15id) antibodies and a PC-containing antigen, R36a for 3 d, were capable of specifically suppressing the anti-PC response of fresh normal spleen cells, indicating that idiotype-specific suppressor cells were generated during the culture period. The presence of specific antigen also appeared to be necessary because anti-T15id antibodies and a control antigen, DNP-Lys-Ficoll, were not capable of generating such suppressor cells. Suppressor cells were induced only in the population of spleen cells nonadherent to nylon wool and the suppressive activity was abrogated by treatment with anti-Thy 1.2 serum and complement. These results indicate that anti-idiotype antibodies and specific antigen can generate idiotype-specific suppressor T cells in vitro. These in vitro results may reflect in vivo mechanisms of idiotype suppression.


1994 ◽  
Vol 18 (3) ◽  
pp. 199-203 ◽  
Author(s):  
Masaobu Kobayashi ◽  
Jun Nishihara ◽  
Yoshihiro Fujii ◽  
Hiroshi Maeda ◽  
Masuo Hosokawa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shiue-Wei Lai ◽  
Ming-Yao Chen ◽  
Oluwaseun Adebayo Bamodu ◽  
Ming-Shou Hsieh ◽  
Ting-Yi Huang ◽  
...  

Background. Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. Methods. Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). Results. The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. Conclusion. Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.


Sign in / Sign up

Export Citation Format

Share Document