Activation of Rac1 through FARP1 Induces Dexamethasone Resistance in Multiple Myeloma Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2248-2248
Author(s):  
Atsuko Yamazaki ◽  
Masahiro Takeuchi ◽  
Tatsuzo Mishina ◽  
Miki Yamazaki ◽  
Chika Kawajiri ◽  
...  

Abstract Recently, novel agents such as bortezomib and lenalidomide have been introduced for multiple myeloma (MM) treatment and have improved patients' survival drastically. However, dexamethasone remains a mainstay in the treatment of MM. Dexamethasone effectively induces tumor cell death when used for the initial treatment of MM. In addition, dexamethasone has a synergistic effect with novel agents and is hence used in combination with such agents. However, prolonged dexamethasone exposure may lead to drug resistance. To elucidate the mechanism of dexamethasone resistance, we generated a dexamethasone-resistant subline of the MM cell line RPMI8226. We cultured RPMI8226 cells with 1 µM dexamethasone for 7 weeks and established the dexamethasone-resistant cell line Dex-R. This cell line showed no difference in survival in the presence or absence of 1 µM dexamethasone. We then examined differences in gene expression between RPMI8226 and Dex-R cells using cDNA microarray. Expression of the FARP1 gene, which is a transforming growth factor beta (TGF-b) target gene in myeloma cells, was increased approximately 50-fold in Dex-R cells compared to that in RPMI8226 cells. In some myeloma patients who become chemoresistant, myeloma cells show high levels of FARP1 expression at the initial stage. FARP1 has a Rho-GEF domain and can associate with proteins on the cell membrane through the FERM domain. In the nervous system, FARP1 is involved in synaptogenesis via the activation of Rac1. Based on these observations, we hypothesize that Dex-R cells acquires dexamethasone resistance with an increase in the level of FARP1 expression via the activation of Rac1. To verify this hypothesis, we established inducible FARP1 knockdown Dex-R cells using the TET-ON lentiviral system. We cultivated these cells for 24 h with doxycycline and added 1 µM dexamethasone. A total of 48 h after adding dexamethasone, we measured cell viability using the MTS assay. We cultured Dex-R cells with a Rac1 inhibitor (NSC23766) and added dexamethasone 12 h later. FARP1 expression decreased to approximately 10% in FARP1 knockdown cells 24 h after the addition of doxycycline. Without dexamethasone, there was no difference in survival in the presence or absence of doxycycline. However, when cells were cultured with dexamethasone, the growth of FARP1 knockdown Dex-R cells was significantly inhibited compared with that of the control (Fig 1). Next, we examined the change in dexamethasone resistance on the addition of the Rac1 inhibitor. The number of cells increased after 96 h without dexamethasone. On the other hand, the number of cells significantly decreased when cultured with dexamethasone (Fig 2). These data suggest that resistance to dexamethasone in Dex-R cells was mitigated by the inhibition of Rac1. We conclude that the activation of Rac1 through FARP1 is one mechanism of dexamethasone resistance in MM. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1832-1832
Author(s):  
Sohtaro Mine ◽  
Shotaro Hagiwara ◽  
Amane Tagashira ◽  
Toru Igari ◽  
Akiyoshi Miwa

Abstract Abstract 1832 Background Recent development of novel agents such as bortezomib, lenalidomide, and thalidomide improved the remission rate and survival of multiple myeloma. However, the end stage of myeloma is still uncontrollable. The extramedullary disease (EMD) progression of myeloma was frequently observed in heavily treated patients, whereas few data exist about its incidence and predictive factors. It is well known that adhesion molecules play a role in disease progression and drug resistance. We investigated factors associated with the EMD progression based on the autopsy cases. In addition, the effect of the exposure to novel agents on the expression of adhesion molecules on myeloma cells was analyzed. Methods We reviewed autopsy reports and medical records of 91 multiple myeloma cases between 1979 and 2012 at the National Medical Center for Global Health and Medicine in Tokyo, Japan. The sites of myeloma cell invasion, infection, hemorrhage and renal complications were studied gross and microscopically. Patient profile, duration of illness, type of monoclonal gammopathy, clinical stage and history of treatment were studied. Durie & Salmon's criteria was used for diagnosis and staging. Factors associated with EMD were statistically analyzed using Student's t-test and the chi-square test. NCAM, VCAM, ICAM, and LFA-1 immunostaining in the bone marrow was performed. Results In 91 autopsy cases, 62.6% was male. Mean age and the duration of illness was 63.0 (38–85) years old and 40.6 months (1–156). Eighteen patients (19.8%), 23 (25.3%), and 15 (16.4%) were treated with novel agents, SCT and both respectively. EMD progression of myeloma cells was observed in 65 patients (71.4%). Frequent sites of EMD were spleen (48.9%), liver (37.8%), kidney (31.1%), lymph nodes (28.6%), lung (25.6%), pancreas (20.0%), and gastro-intestinal tract (18.9%). The incidence of EMD was significantly higher in patients treated with novel agents than in patients without novel agents (94.4% vs. 65.8%, p=0.016). The risk factors of EMD were novel agents, longer duration of illness, and adverse cytogenetic abnormalities. In the cases with novel agents, the expression of NCAM was significantly low (11.1% vs. 57.4%, p=0.049) compared to the cases without novel agents. However, the expression of VCAM was significantly higher in the cases with novel agents than the cases without novel agents (40.0% vs. 0%, p=0.01). Conclusion Multi-organ involvement of myeloma is not rare in autopsy cases of the disease. Exposure to novel agents may contribute to extramedullary spread of myeloma cells and altered expression of adhesion molecules. Further study on other adhesion molecules is needed. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4868-4868
Author(s):  
Juan Li ◽  
Junhe Li ◽  
Shaokai Luo ◽  
Yin Zhao

Abstract Objective To study the different expression of death receptors and decoy receptors on mononuclear cells from patients with multiple myeloma and myeloma cell line KM3 and compare the different expression of TRAIL receptors after chemotherapy or exposure to doxorubicin, to explore the mechanisms by which TRAIL selectively kills tumor cells. Methods Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry was used to investigate the expression of four receptors on mononuclear cells in 23 multiple myeloma patients and myeloma cell line KM3 and 15 controls, we furthermore compared the changes of expression mode after chemotherapy and incubation of KM3 cell with sub-clinical concentration of Doxorubicin. Results There finds only DR4 and DR5 on KM3 cell line without the expression of DcR1 and DcR2. Expression of DR4 and DR5 on mononuclear cells of MM patients is higher than that of controls (P<0.05), but DcR1 and DcR2 expression was lower than that of controls (P<0.05), after chemotherapy and exposure to Doxorubicin, the expression of DR5 on MM cells was up-regulated (P<0.05) Conclusions The expression of four receptors on myeloma cells and normal controls was significantly different, which might account for the selective killing effect of TRAIL on MM cells. DR5 was up-regulated on KM3 when incubating with Doxorubicin and after chemotherapy which suggests chemotherapy agents might enhance the apopotosis of MM cells through up-regulating of DR5 receptor.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 358-358
Author(s):  
Jotin Marango ◽  
Manabu Shimoyama ◽  
Boris A. Leibovitch ◽  
Ming Ming Zhou ◽  
Yolanda Martinez ◽  
...  

Abstract Over 40% of cases of multiple myeloma (MM) are associated with translocations of the immunoglobulin heavy (IgH) chain gene gene. The t(4;14) translocation, present in ca. 20% of myeloma cases, results in the overexpression of two potential oncogenes, MMSET and FGFR3, via juxtaposition of their endogenous promoters to regulatory elements of the IgH locus. The presence of t(4;14), and MMSET overexpression, is an adverse prognostic factor in MM irrespective of FGFR3 expression. MMSET contains several conserved motifs found in proteins involved in chromatin function (PWWP, HMG, PHD domains) and in the epigenetic control of transcription (SET domain). Accordingly, we found that the two main isoforms of the MMSET protein exhibit exclusive nuclear localization in both transfected fibroblasts and myeloma cells carrying t(4;14). Towards our goal of defining the ability of MMSET to affect gene regulation and contribute to the disease pathogenesis, we found that the SET domain of MMSET possesses in vitro methyltransferase activity specific for core histones H3 and H4. Using a computational approach and theoretical extrapolation from the solved NMR structure of vSET, we identified residues in the active site of MMSET essential for catalysis, whose mutation drastically reduces enzymatic activity. Reporter assays using Gal4 fusion constructs showed that both the amino terminus of MMSET, containing the PWWP and HMG domains, as well as the SET-containing carboxy terminus act as transcriptional repressors. MMSET interacts physically and functionally with a number of known co-repressor molecules, such as HDAC1, HDAC2, Sin3a, and SIRT1, but not HDAC4 or HDAC6. As such, MMSET co-expression enhances HDAC1 and HDAC2-mediated repression in transcriptional reporter assays, and MMSET repression is partially relieved by the addition of an HDAC inhibitor. A yeast two hybrid screen identified a number of other functional partners of MMSET, including ZNF331/RITA (Rearranged in Thyroid Adenoma), a KRAB domain/zinc finger protein previously implicated in malignancy. MMSET and ZNF331 co-localize in the nuclei of transfected fibroblasts, co-immunoprecipitate, and display cooperative repression in reporter assays. Collectively, these data support the idea that MMSET is a biologically active, bifunctional transcriptional mediator acting as a HMT enzyme in chromatin remodeling and as a complex adaptor in the recruitment of repressor species. Presently we are modeling the biological effects of MMSET through a conditional overexpression system in a B cell line. While low levels of MMSET are ubiquitiously expressed, induction of high levels of MMSET expression in the B cell line is associated with growth suppression and G1 arrest. While paradoxical for a presumed oncoprotein, such actions have been observed for other disease-associated proteins such as Runx1/MTG8. In contrast, a myeloma cell line harboring t(4;14) proliferates in the presence of high level MMSET expression. RNAi-mediated knockdown of MMSET in these cells induces apoptotic cell death. This suggests that MMSET may be critical for growth and survival of myeloma cells. Profiling of gene expression changes in these systems should link the transcriptional and biological activities of MMSET.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3444-3444
Author(s):  
Magne Rekvig ◽  
Anne-Tove Brenne ◽  
Torstein Baade Ro ◽  
Anders Waage ◽  
Magne Borset ◽  
...  

Abstract Multiple myeloma has two distinct features: Expansion of malignant plasma cells within the bone marrow accompanied by skeletal destruction. Bone morphogenetic proteins (BMPs) have been shown to induce apoptosis and inhibit growth in myeloma cells. BMPs are members of the TGF-β superfamily of proteins capable of inducing bone formation, and regulate proliferation, differentiation and apoptosis. We have investigated myeloma cell apoptosis and proliferation with BMP-4 and −6 in concert with the myeloma cell growth factors interleukin (IL)-2, IL-6, IL-10, IL-15, IL-21, tumor necrosis factor (TNF)-α and insulin-like growth factor (IGF)-1. Eight samples of highly purified myeloma cells from patients and a human myeloma cell line, IH-1 (Brenne AT et al. Blood. 2002 May 15;99(10):3756–62.), were used in this study. Cytokine concentrations used in the referred experiments were for BMP-4 20ng/ml, BMP-6 250ng/ml, IL-15 20ng/ml and IL-6 0,1ng/ml, respectively. Growth inhibition was measured in a proliferation assay by methyl-[3H]-thymidine incorporation and apoptosis by annexin V- FITC-binding/PI-uptake on flow cytometry. IL-15 antagonized growth inhibition (Figure A) and prevented apoptosis induced by BMP-4 (Figure B) and BMP-6 in the myeloma cell line IH-1. IL-15 also antagonized the growth inhibition induced by BMP-4 and/or BMP-6 in three out of eight patient samples. Neither IL-6, nor any of the other investigated cytokines were able to rescue the myeloma cells from growth inhibition and apoptosis induced by BMP-4 and -6. Among the investigated cytokines, we found that IL-15 has a unique capability to antagonize BMP- induced apoptosis and growth inhibition in myeloma cells. We examined cleavage of the proapoptotic protein caspase-3 and found that BMP-4 activated caspase-3 in the IH-1 cell line. This activation of caspase-3 was blocked by IL-15 but not by IL-6. We have demonstrated a possible mechanism for myeloma cells to escape apoptosis and growth-inhibition within the bone marrow. Intramedullar levels of IL-15 and BMPs may play a role in the pathogenesis of multiple myeloma. Figure A. Proliferation in response to BMP-4 stimulus Figure A. Proliferation in response to BMP-4 stimulus Figure B. Apoptosis in response to BMP-4 stimulus Figure B. Apoptosis in response to BMP-4 stimulus


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1915-1915
Author(s):  
Unn-Merete Fagerli ◽  
Thorsten Stühmer ◽  
Toril Holien ◽  
Randi Utne Holt ◽  
Ove Bruland ◽  
...  

Abstract Abstract 1915 Multiple myeloma is a paradigm for a malignant disease that exploits external stimuli of the microenvironment for growth and survival. A thorough understanding of the complex interactions between malignant plasma cells and their surrounding requires a detailed analysis of the transcriptional response of myeloma cells to environmental signals. We hypothesized that the intracellular signals evoked by cytokines converge and regulate transcription of a set of genes that are common targets for several growth factors and therefore constitute pivotal mediators of the tumor-promoting effects of autocrine or paracrine stimuli. To identify such targets, we determined the changes in gene expression induced by IL-6, TNFalpha, IL-21 or co-culture with bone marrow stromal cells in myeloma cell lines. Among a limited set of genes that were consistently activated in response to growth factors, a prominent transcriptional target of cytokine-induced signaling in myeloma cells was the gene encoding the serine/threonine kinase SGK1, which is a down-stream effector of PI3-kinase and highly homologous to AKT. We could demonstrate a rapid, strong and sustained induction of SGK1 in the cell lines INA-6, ANBL-6, IH-1, OH-2 and MM.1S as well as in primary myeloma cells. Pharmacologic inhibition of the JAK/STAT pathway abolished STAT3 phosphorylation and SGK1 induction. In addition, shRNA-mediated knock-down of STAT3 reduced basal and induced SGK1 levels, demonstrating the involvement of the JAK/STAT3 signaling pathway in SGK1 induction. Furthermore, down-regulation of SGK1 by shRNAs resulted in decreased proliferation and viability of myeloma cell lines. Our results indicate that SGK1 is a highly cytokine-responsive gene in myeloma cells promoting their growth and survival and represents an attractive candidate for further evaluation as a therapeutic target. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1842-1842
Author(s):  
Damian J. Green ◽  
Nural N. Orgun ◽  
Mark D. Hylarides ◽  
John M. Pagel ◽  
Donald K. Hamlin ◽  
...  

Abstract Abstract 1842 Multiple myeloma (MM) remains incurable despite improved response rates and improved progression free survival in the era of therapy with novel agents, including bortezomib, thalidomide, and lenalidomide. Disease persistence is presumably due to residual malignant plasma cell clones that evade or develop resistance to available therapies. The efficacy of radioimmunotherapy (RIT) in the treatment of hematologic malignancies is well established and the radiosensitivity of malignant plasma cells has been demonstrated in both preclinical and clinical settings. The ectoenzyme receptor CD38 is a plasma cell antigen that exhibits relatively specific, stable and uniform expression (95–100%) at a high epitope density on myeloma cells, making it an attractive target for antibody based therapies, including RIT. Pretargeted RIT (PRIT), using a multi-step streptavidin (SA)-biotin targeting system enhances the therapeutic index of delivered radiation. We have generated an anti-CD38 antibody (Ab)-SA synthetic chemical conjugate (OKT10-SA). The OKT10-SA construct binds with high avidity to myeloma cells while retaining full biotin-binding capability for radiolabeled DOTA-biotin. Blood, tumor and nonspecific organ uptakes of OKT10-SA were directly measured in biodistribution experiments involving athymic nude mice bearing human MM xenograft tumors. Groups of 5 mice with s.c. L363 human MM (IgG) xenograft tumors received 1.4 nmol (300 μg) of either OKT10-SA (anti-CD38 SA) or an IgG1 isotype matched control Ab BHV1-SA (bovine herpes virus-1) 22 hrs prior to synthetic biotin-acetyl-galactosamine clearing agent (CA; 5.8 nmol [50 μg]) and 24 hrs prior to trace labeled 111In-DOTA-biotin (1 μg). The CA removed >95% of both unbound OKT10-SA and BHV1-SA from the mouse circulation within 30 minutes of administration. Animals were euthanized and comprehensive tissue biodistributions were assessed 2, 24, 48 and 96 hrs after 111In-DOTA-biotin injection. Tumors excised from mice pretargeted with OKT10-SA contained 13.1 ± 1.9 % of the injected dose of 111In-DOTA-biotin per gram (% ID/g) after 2 hrs and 8.8 ± 2.8 % ID/g after 24 hrs compared to 2.4 ± 0.6 % ID/g after 2 hrs and 0.9 ± 0.4 % ID/g after 24 hrs in tumors excised from control mice pretargeted with BHV1-SA. Tumor-to-normal organ ratios of absorbed radioactivity were 8:1; 10:1; 8:1; and 6:1 respectively for blood, lung, liver and kidney in mice pretargeted with OKT10-SA; compared to 0.6:1; 0.9:1; 0.8:1 and 0.4:1 respectively, in control mice pretargeted with BHV1-SA. Therapy studies were then performed in athymic nude mice (n=9-10/group) bearing s.c. L363 human MM xenograft tumors. Reagent concentrations and time-points for administration of OKT10-SA, BHV1-SA and CA were identical to those reported for the biodistribution studies. The high energy beta particle emitter 90Yttrium (t1/2 = 64 hrs) was used as the therapeutic radionuclide. 90Y-DOTA-biotin (2 μg) was labeled with 400 μCi, 800 μCi, or 1200 μCi per mouse in 3 OKT10-SA groups and 3 control groups (untreated control; 800 μCi or 1200 μCi 90Y-DOTA-biotin following BHV1-SA). All mice in the untreated control and BHV1-SA control groups experienced exponential MM tumor growth and 78% of the untreated control animals required euthanasia within 17 days. All mice pretargeted with OKT10-SA demonstrated tumor shrinkage by day 6 at all dose levels (see figure). After 17 days, 90% of the OKT10-SA treated animals in the 400 μCi and 1200 μCi groups and 100% of the animals in the 800 μCi remained alive. One animal treated with 1200 μCi was euthanized on day 10 due to weight loss, however the remaining 9 animals from that group were 106 ±9% of initial body weight on day 17. Objective remissions were observed within 6 days in 100% of the mice treated with OKT10-SA followed by 1200 μCi of 90Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in OKT10-SA treated mice compared to tumors that were 5240 ± 2495% of initial tumor volume in untreated control animals) by day 17. These studies represent the first application of both PRIT and CD38 targeted radioimmunotherapy in MM. Favorable OKT10-SA biodistribution findings correlate with early evidence of therapeutic efficacy. Tumor responses in this MM xenograft tumor model are encouraging, but long term toxicity and survival results are not yet mature. Future studies combining PRIT and novel agents are planned in xenograft and SCID-hu myeloma models. Disclosures: Gopal: Millenium. Wood:BD Biosciences: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document