Low Level Platelet-Activating Antibodies in Patients Suspected of Having Heparin-Induced Thrombocytopenia but Testing Negative in the ”Gold Standard” Functional Test

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2757-2757
Author(s):  
Ishac Nazi ◽  
Donald M Arnold ◽  
James W Smith ◽  
Theodore E. Warkentin ◽  
Jane C Moore ◽  
...  

Abstract Background: Heparin-induced thrombocytopenia (HIT) is a common drug reaction that causes arterial or venous thrombosis as a result of heparin therapy. Platelet-activating antibodies, against complexes of platelet factor 4 (PF4) and heparin, cause intense platelet activation, ultimately leading to an increased risk of thrombosis, limb-loss and even death. Most patients exposed to heparin will produce non-pathogenic anti-PF4/heparin antibodies while only a small number will produce platelet-activating and HIT-causing antibodies (pathogenic HIT antibodies). Among HIT tests, the functional assays, such as the serotonin release assay (SRA), correlate best with the disease because they can specifically identify the pathogenic HIT antibodies whereas the enzyme immunoassays (EIAs) cannot. We have previously shown that anti-PF4/heparin antibody production precedes thrombocytopenia in HIT patients (Warkentin et al., Blood 2009 113: 4963-4969) possibly indicating the need for a threshold plasma level of pathogenic HIT antibody, among other factors, to cause the disease. The objective of this study was to investigate the presence of low levels of pathogenic HIT antibodies in samples from patients suspected of HIT who had detectable anti-PF4/heparin antibodies in the EIA (EIA-positive), but who did not have platelet-activating antibodies in the standard SRA (SRA-negative). Methods: We used an in-house IgG-specific EIA to detect the presence of anti-PF4/heparin antibodies (EIA-positive: OD405nm> 0.45) and the standard SRA to detect the presence of heparin-dependent platelet-activating antibodies (SRA-positive: release >20% with 0.1-0.3 IU/mL of unfractionated heparin). We developed an enhanced SRA (eSRA) by adding increasing concentrations of exogenous PF4 (0-100 μg/mL) to detect sub-threshold levels of platelet activating antibodies undetectable in the standard SRA (eSRA-positive: release >20%). Samples tested were referred for HIT testing by the McMaster Platelet Immunology Laboratory (Hamilton, Canada). Results: Sera from healthy individuals (n=10) and from suspected HIT patients with a negative anti-PF4/heparin EIA (n=15) did not demonstrate platelet activation in the eSRA at any dose of exogenous PF4 added. SRA-positive sera (n = 7), diluted sufficiently that they were non-reactive in the standard SRA, demonstrated PF4 dose-dependent platelet activation in the eSRA. This confirmed the increased sensitivity of the eSRA in detecting low-titre platelet-activating antibodies. Reactivity in the eSRA was inhibited by high heparin (100 U/mL) and by blocking the platelet FcgRIIa receptor with the monoclonal antibody IV.3. We then tested samples (n=24) referred for HIT testing that were positive in the anti-PF4/heparin EIA (optical densities OD405nm 0.7 to 2.4) but negative in the standard SRA. Heparin-dependent platelet activation (20-99% release) was demonstrated in 11 of 24 (46%) in the eSRA. This reactivity directly correlated with the amount of PF4 added to the platelets (optimal concentration of PF4 12.5 - 100 μg/mL) but not with the strength (OD405nm) of the anti-PF4/heparin EIA. In further investigations, we concentrated (4-fold) 7 of the 11 eSRA-positive samples in an attempt to increase the concentration of the antibodies. Of those 7 samples, 5 (71%) became positive in the standard SRA upon testing of the concentrated sample. Conclusions: These data indicate that low-titre platelet-activating antibodies may be found in some patients suspected of having HIT that test negative in the standard SRA irrespective of the strength (OD405nm) of the anti-PF4/heparin EIA. The immune response during heparin therapy can produce both families of pathogenic and non-pathogenic anti-PF4/heparin antibodies but it is the titre of the pathogenic antibody that may be necessary for platelet activation. Perhaps under permissive clinical conditions and with patient-specific factors, the titre of the pathogenic HIT antibodies may increase and lead to HIT. Disclosures Warkentin: Pfizer Canada: Honoraria; Instrumentation Laboratory: Honoraria; GlaxoSmithKline: Consultancy, Research Funding; W.L. Gore: Consultancy, Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3746-3746
Author(s):  
Angela Huynh ◽  
Donald M. Arnold ◽  
James W. Smith ◽  
Taylor D. Elliott ◽  
Hina Bhakta ◽  
...  

Abstract Introduction: Heparin-induced thrombocytopenia (HIT) is a complication of heparin therapy that is caused by antibodies to complexes of platelet factor 4 (PF4) and heparin. Several studies have reported that in order for these immune complexes to be pathogenic, they must assemble on the platelet surface. When bound to the platelet surface, the conformation of PF4 allows for optimal presentation of the epitope for antibody binding and subsequent activation of Fc-receptors on platelets and monocytes. To what degree pathogenic HIT immune complexes can form and activate platelets in fluid-phase as with other immune complex diseases (systemic lupus erythematosus, glomerulonephritis, and rheumatoid arthritis) is not known. We used mutated PF4 proteins that can no longer bind the platelet surface to evaluate anti-PF4/heparin antibody induced platelet activation. We hypothesized that the epitopes required for PF4 binding of HIT antibodies and subsequent platelet activation can be formed in fluid-phase. Methods: Each of the 70 amino acids of PF4 were mutated previously by alanine scanning mutagenesis where non-alanine residues were mutated to alanine or alanine residues to valine. We selected 14 PF4 mutants that affected KKO (a platelet-activating murine monoclonal HIT-like antibody) binding in a heparin-capture assay for this study. Mutant and wild-type PF4 were overexpressed in Escherichia coli and affinity purified. To confirm binding to platelets, biotin-conjugated PF4 mutants were incubated with donor platelets and PF4 platelet binding was measured using streptavidin-FITC by flow cytometry. Platelet activation was measured using a modified 14C-serotonin-release assay, where excess wild-type or mutant PF4 (0, 50 and 100 μg/mL) was added to 14C-serotonin-labelled donor platelets and activation was measured after incubation with KKO. ≥20% 14C-serotonin release was considered positive for platelet activation. Platelet activation was correlated with platelet surface binding to identify mutants that could form surface-bound or fluid-phase antigenic complexes. Results: Of the 14 PF4 mutants tested, 7 bound to platelet surfaces and 11 supported platelet activation by KKO. These PF4 mutants were further characterized into 3 categories: PF4 mutants that bound to the platelet surface and induced platelet activation (n=6); PF4 mutants that did not bind to the platelet surface but induced platelet activation (n=5); and PF4 mutants that bound to the platelet surface but did not induce platelet activation (n=1). These results indicate that certain PF4 mutants were able to bind KKO and induce platelet activation in fluid-phase. These data suggest that specific epitopes in fluid-phase PF4/heparin immune complexes can mediate platelet activation in HIT, without the need for surface assembly on the platelet. Conclusions: Using point mutations of PF4, we have identified that the HIT antigenic complexes can be formed in fluid-phase and induce platelet activation. Further studies are required to investigate the role of a fluid-phase HIT antigen complex in the development of thrombocytopenia, inflammation and thrombosis of HIT. This study was funded by the Canadian Institutes for Health Research. Disclosures Arnold: Bristol Myers Squibb: Research Funding; Amgen: Consultancy, Research Funding; UCB: Consultancy; UCB: Consultancy; Novartis: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Thomas L. Ortel

Abstract Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder caused by the development of antibodies to platelet factor 4 (PF4) and heparin. The thrombocytopenia is typically moderate, with a median platelet count nadir of ~50 to 60 × 109 platelets/L. Severe thrombocytopenia has been described in patients with HIT, and in these patients antibody levels are high and severe clinical outcomes have been reported (eg, disseminated intravascular coagulation with microvascular thrombosis). The timing of the thrombocytopenia in relation to the initiation of heparin therapy is critically important, with the platelet count beginning to drop within 5 to 10 days of starting heparin. A more rapid drop in the platelet count can occur in patients who have been recently exposed to heparin (within the preceding 3 months), due to preformed anti-heparin/PF4 antibodies. A delayed form of HIT has also been described that develops within days or weeks after the heparin has been discontinued. In contrast to other drug-induced thrombocytopenias, HIT is characterized by an increased risk for thromboembolic complications, primarily venous thromboembolism. Heparin and all heparin-containing products should be discontinued and an alternative, non-heparin anticoagulant initiated. Alternative agents that have been used effectively in patients with HIT include lepirudin, argatroban, bivalirudin, and danaparoid, although the last agent is not available in North America. Fondaparinux has been used in a small number of patients with HIT and generally appears to be safe. Warfarin therapy should not be initiated until the platelet count has recovered and the patient is systemically anticoagulated, and vitamin K should be administered to patients receiving warfarin at the time of diagnosis of HIT.


Perfusion ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 47-53 ◽  
Author(s):  
William J DeBois ◽  
Junli Liu ◽  
Leonard Y Lee ◽  
Leonard N Girardi ◽  
Charles Mack ◽  
...  

Heparin-induced thrombocytopenia (HIT) is a major side effect secondary to the administration of heparin. This syndrome is serious and potentially life threatening. This response is the result of antibodies formed against the platelet factor 4 (PF4)/heparin complex. The incidence of this immune-mediated syndrome has been estimated to be 1-3% of all patients receiving heparin therapy. The occurrence of HIT in patients requiring full anticoagulation for cardiopulmonary bypass (CPB), therefore, presents a serious challenge to the cardiac surgery team. The diagnosis of HIT should be based on both clinical and laboratory evidence. While functional assays, platelet aggregation tests, and the serotonin release assay can be used to support the diagnosis, the negative predictive value of these tests is generally less than 50%. In contrast, although non-functional antibody detection assays are more sensitive, they have a low specificity. HIT can be treated in several ways, including cessation of all heparin and giving an alternative thrombin inhibitor, platelet inhibition followed by heparin infusion, and the use of low molecular weight heparins. In this presentation, the pathology and current diagnostic tests, as well as the successful management of patients with HIT undergoing CPB at New York Presbyterian Hospital, are reviewed.


2000 ◽  
Vol 124 (11) ◽  
pp. 1657-1666 ◽  
Author(s):  
Fabrizio Fabris ◽  
Sarfraz Ahmad ◽  
Giuseppe Cella ◽  
Walter P. Jeske ◽  
Jeanine M. Walenga ◽  
...  

Abstract Objective.—This review of heparin-induced thrombocytopenia (HIT), the most frequent and dangerous side effect of heparin exposure, covers the epidemiology, pathophysiology, clinical presentation, diagnosis, and treatment of this disease syndrome. Data Sources and Study Selection.—Current consensus of opinion is given based on literature reports, as well as new information where available. A comprehensive analysis of the reasons for discrepancies in incidence numbers is given. The currently known mechanism is that HIT is mediated by an antibody to the complex of heparin–platelet factor 4, which binds to the Fc receptor on platelets. New evidence suggests a functional heterogeneity in the anti-heparin-platelet factor 4 antibodies generated to heparin, and a “superactive” heparin-platelet factor 4 antibody that does not require the presence of heparin to promote platelet activation or aggregation has been identified. Up-regulation of cell adhesion molecules and inflammatory markers, as well as preactivation of platelets/endothelial cells/leukocytes, are also considered to be related to the pathophysiology of HIT. Issues related to the specificity of currently available and new laboratory assays that support a clinical diagnosis are addressed in relation to the serotonin-release assay. Past experience with various anticoagulant treatments is reviewed with a focus on the recent successes of thrombin inhibitors and platelet GPIIb/IIIa inhibitors to combat the platelet activation and severe thrombotic episodes associated with HIT. Conclusions.—The pathophysiology of HIT is multifactorial. However, the primary factor in the mediation of the cellular activation is due to the generation of an antibody to the heparin-platelet factor 4 complex. This review is written as a reference for HIT research.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Lubica Rauova ◽  
Mortimer Poncz ◽  
Steven E. McKenzie ◽  
Michael P. Reilly ◽  
Gowthami Arepally ◽  
...  

Abstract Heparin-induced thrombocytopenia and thrombosis (HITT) is a severe complication of heparin therapy caused by antibodies to complexes between unfractionated heparin (UFH) and platelet factor 4 (PF4) that form over a narrow molar range of reactants and initiate antibody-induced platelet activation. We observed that UFH and tetrameric PF4 formed ultralarge (> 670 kDa) complexes (ULCs) only over a narrow molar range with an optimal ratio of PF4 to heparin of approximately 1:1. These ULCs were stable and visible by electron microscopy, but they could be dissociated into smaller complexes upon addition of heparin. ULCs formed inefficiently when PF4 was incubated with low-molecular-weight heparin, and none formed with the pentasaccharide fondaparinux sodium. In addition, mutation studies showed that formation of ULCs depended on the presence of PF4 tetramers. The ULCs were more reactive as determined by their capacity to bind to a HITT-like monoclonal antibody and showed greater capacity to promote platelet activation in an antibody- and FcγRIIA-dependent manner than were the smaller complexes. The capacity of PF4 to form ULCs composed of multiple PF4 tetramers arrayed in a lattice with several molecules of UFH may play a fundamental role in autoantibody formation, antibody-dependent platelet activation, and the propensity for thrombosis in patients with HITT.


2020 ◽  
Vol 9 (4) ◽  
pp. 1226 ◽  
Author(s):  
Brigitte Tardy ◽  
Thomas Lecompte ◽  
François Mullier ◽  
Caroline Vayne ◽  
Claire Pouplard

Heparin-induced thrombocytopenia (HIT) is a prothrombotic immune drug reaction caused by platelet-activating antibodies that in most instances recognize platelet factor 4 (PF4)/polyanion complexes. Platelet activation assays (i.e., functional assays) are more specific than immunoassays, since they are able to discern clinically relevant heparin-induced antibodies. All functional assays used for HIT diagnosis share the same principle, as they assess the ability of serum/plasma from suspected HIT patients to activate fresh platelets from healthy donors in the presence of several concentrations of heparin. Depending on the assay, donors’ platelets are stimulated either in whole blood (WB), platelet-rich plasma (PRP), or in a buffer medium (washed platelets, WP). In addition, the activation endpoint studied varies from one assay to another: platelet aggregation, membrane expression of markers of platelet activation, release of platelet granules. Tests with WP are more sensitive and serotonin release assay (SRA) is considered to be the current gold standard, but functional assays suffer from certain limitations regarding their sensitivity, specificity, complexity, and/or accessibility. However, the strict adherence to adequate preanalytical conditions, the use of selected platelet donors and the inclusion of positive and negative controls in each run are key points that ensure their performances.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2189-2189
Author(s):  
Susanne Macher ◽  
Nazanin Sareban ◽  
Camilla Drexler ◽  
Gerhard Lanzer ◽  
Katharina Schallmoser

Abstract Abstract 2189 Heparin-induced thrombocytopenia (HIT), caused by antibodies against heparin/platelet factor 4 (HPF4) complex, is a rare but potentially serious side effect of heparin therapy where due to high mortality, rapid diagnosis is crucial. For the detection of HPF4 antibodies we compared the new nanoparticle-based lateral-flow immunoassay (LFI-HIT, Milenia Biotec, Germany) and a particle gel immunoassay (PaGIA, BioRad, Germany) with an IgG-specific-PF4/polyanion enzyme-linked immunosorbent assay (IgG-ELISA, GTI Diagnostics, USA). Sera from 121 patients (54/67 f/m, median 73 years, range 14–94) with suspected HIT were prospectively tested. The LFI-HIT and the PaGIA were evaluated visually, the IgG-ELISA was positive at an optical density (OD) cutoff > 0.4. For most of the positive samples, the functional heparin-induced platelet activation (HIPA) assay was additionally performed to detect false positive serological results and to confirm a clinically relevant HIT by in vitro platelet-activation. Regarding HIT as a clinico-pathological syndrome, characteristics for HIT were evaluated for each patient by the 4Ts scoring system and divided into high, intermediate or low risk. Results of serological analyses and OD values are summarized in the table. Ten of 121 samples were positive in the LFI-HIT, 10/10 positive in the PaGIA and 8/10 positive in the IgG-ELISA. The HIPA was tested in 9/10 samples and was positive in 8/9 samples. Of the 2 samples positive for LFI-HIT and PaGIA but negative in the ELISA, 1 was HIPA positive, 1 HIPA negative, resulting in a specificity of 88.9% for the LFI-HIT assay correlated to the HIPA. From 111/121 LFI-HIT-negative samples, 2 were positive in the PaGIA, the IgG-ELISA (OD 1.318 and 2,019) and in the HIPA. Seven of the 111 LFI-HIT negative samples were positive only in the IgG-ELISA. Due to marginal positive reactions of 5/7 samples in the ELISA with OD values between 0.4 to 0.5, only 2 LIF-HIT negative IgG-ELISA positive samples were tested by HIPA and 1/2 was positive. Based on the ELISA, the sensitivity of the LFI-HIT was 91.9% (102/111 negative samples also negative in the ELISA) in contrast to 93.1% of the PaGIA. The specificity of the LFI-HIT was 80% (LFI-HIT and IgG-ELISA positive), compared to 57.9% of the PaGIA. Notably, the clinical risk estimated by the 4Ts score system (received from 92/121 patients) did not correlate with laboratory diagnosis of HIT, probably due to inadequate evaluation. Concluding our data, a reliable exclusion of HIT by rapid testing with the LFI-HIT only seems possible with additional analysis of HPF4 antibodies by IgG-ELISA and/or HIPA assay. LFI-HIT PaGIA IgG-ELISA OD IgG-ELISA HIPA assay Median (range) Samples n=121 Pos 10 Pos 10 Pos 8 2.366 (0.902-3.000) 7/7 pos Neg 2 0.199 and 0.170 1/2 pos, 1/2 neg Neg 0 - - - - Neg 111 Pos 9 Pos 2 1.318 and 2.019 2/2 pos Neg 7 0.110 (0.054-0.139) 6/6 neg Neg 102 Pos 7 0.436 (0.404-1.463) 1/2 pos, 1/2 neg Neg 95 0.082 (0.013-0.376) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2328-2328 ◽  
Author(s):  
Theodore E. Warkentin ◽  
Paul Andrew Basciano ◽  
Richard A. Bernstein

Abstract Introduction Heparin-induced thrombocytopenia (HIT) is a transient, autoimmune-like, prothrombotic disorder caused by heparin-dependent, platelet-activating IgG reactive against platelet factor 4/heparin (PF4/H). There is an emerging literature (Am J Med 2008;121:632-6. J Thromb Haemost 2008;6:1598-1600; Thromb Haemost 2013;109:669-75) pointing to rare instances of “spontaneous” HIT in patients without preceding heparin. We report 2 new cases and propose a definition for this controversial disorder. CASE #1. A 62-y.o. man presented with left middle cerebral artery stroke and thrombocytopenia (platelet count, 65×109/L). There was no previous history of thrombocytopenia, surgery, hospitalization, or heparin exposure. Clot extraction performed with heparin was complicated by further platelet count decline to 27 (nadir) and progressive thrombosis of the carotid artery. Aspirin was started, and the platelets recovered to >150 by day 13. CASE #2. A 54-y.o. female developed right leg swelling, left-upper extremity weakness/paresthesias, and thrombocytopenia (61×109/L) 15 days post-shoulder hemiarthroplasty; no intra-/postoperative heparin had been given. Brain MRI demonstrated acute infarct in the left posterior inferior cerebellar artery territory; angiography showed non-visualization of the left vertebral artery. Ultrasound revealed right lower-limb deep-vein thrombosis. Heparin treatment resulted in further platelet count fall to 37 (nadir). Treatment with argatroban, followed by fondaparinux, was associated with platelet count recovery to >150 by day 39. Methods Testing for HIT antibodies was performed by commercial EIA-IgG/A/M (Immucor GTI Diagnostics), in-house EIA-IgG (McMaster), and serotonin-release assay (SRA). Results Both patients’ sera (obtained before any heparin administration) tested strongly positive for HIT antibodies (Table), including strong platelet activation at 0.1 and 0.3 IU/mL heparin, as well as at 0 U/mL heparin, with no platelet activation at 100 IU/mL heparin: these serological features are characteristic of “delayed-onset HIT” (Ann Intern Med 2001;135:502-6). Antibody reactivity declined markedly by 2 to 4 weeks (including loss of platelet-activating properties at 0 IU/mL heparin), in keeping with the usual transience of HIT antibodies (N Engl J Med 2001;344:1286-92), and paralleling both patients’ platelet count recovery. Discussion These cases further support spontaneous HIT as an unusual explanation for acute arterial stroke and thrombocytopenia. One patient had preceding orthopedic surgery, an event previously reported with spontaneous HIT (Thromb Haemost 2013;109:669-75). The strong serum-dependent platelet activation at 0 IU/mL heparin helps to explain how thrombocytopenia and thrombosis can occur in a patient not receiving heparin. RECOMMENDATION. Based on the serological findings of these and previous cases, we propose that a definitive diagnosis of spontaneous HIT syndrome should be based upon all of the following criteria: thrombocytopenia, thrombosis, lack of proximate heparin exposure, strong-positive PF4-dependent immunoassay(s), and a strong-positive platelet activation assay featuring both heparin-dependent (e.g., high heparin neutralization) and heparin-independent platelet activation (at 0 IU/mL heparin). Disclosures: Warkentin: Pfizer Canada: Honoraria; Paringenix: Consultancy; Immucor GTI Diagnostics: Research Funding; WL Gore: Consultancy; GSK: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4185-4185
Author(s):  
Elona Turley ◽  
Artur J. Szkotak ◽  
Irwindeep Sandhu ◽  
Cynthia M Wu

Abstract Background: Heparin-induced thrombocytopenia (HIT) is associated with anti-platelet factor-4 (PF4)/heparin antibodies that activate platelets, resulting in thrombocytopenia and a pro-thrombotic state. At our institution antibody-mediated platelet activation is demonstrated by lumi-aggregometry, which is a method previously validated against the gold standard serotonin-release assay (SRA). Lumi-aggregometry does not involve radioactive isotopes, which is its major advantage over the SRA. The clinical course of HIT diagnosed via SRA and ELISA has been previously described, and clinical prediction tools such as the 4-T score were validated using these diagnostic tests. However, the clinical picture of HIT diagnosed by lumi-aggregometry has not been previously described. Aims: The objective of this study is to describe the clinical and laboratory presentation of patients diagnosed with HIT by lumi-aggregometry. Methods: Patients with clinically suspected HIT and quantitative anti-PF4 IgG-specific ELISA OD ≥0.400 (Gen-Probe, San Diego) received confirmatory HIT testing by lumi-aggregometry. Briefly, HIT antibody-induced activation of washed healthy donor platelets was tested at therapeutic (0.1U/mL and 0.5U/mL) and high (100U/mL) porcine heparin concentration. The degree of platelet activation was quantitated luminographically based on the light flash reaction of ATP (released from platelet dense-granules) with luciferin luciferase reagent. A ratio of therapeutic to high heparin luminescence amplitude of >5.0 and platelet aggregation at therapeutic, but not high, concentrations was considered a positive result. The results of assays performed by our regional HIT testing referral laboratory from June 2009 to July 2012 were reviewed to identify patients with positive HIT testing by lumi-aggregometry. Patient records were retrospectively reviewed to obtain predefined data on baseline patient characteristics, heparin exposure, platelet counts, and thrombotic events occurring in the 5 days preceding or the 30 days following the date of positive HIT testing. Results: We identified 43 patients diagnosed with HIT by lumi-aggregometry (median age 68.0, 49% male) while under the care of local academic (46%) or urban community hospitals (37.2% medical; 53.5% surgical; 9.3% intensive care). Median baseline platelet count was 187 (14-349). Median date of platelet drop post-heparin exposure was 6 days (range 3-14) in patients without prior heparin exposure or platelet transfusions (Figure 1). Platelet drop >50% and platelet nadir ≥20x109/L were present in the majority of patients (Table 1). Thrombocytopenia occurred prior to (70.5%) or the same day (23.5%) as thrombosis in 16/17 patients with serial platelet counts who developed HIT-associated thromboembolism. Conclusion: Patients diagnosed with HIT by lumi-aggregometry present with similar findings to those described in SRA-confirmed HIT. These findings lend support to the use of lumi-aggregometry as an accurate diagnostic assay for the clinico-pathologic syndrome of HIT. Figure 1 Figure 1. Table 1. Percentage platelet drop from baseline and platelet nadir Percent platelet drop Platelet nadir >50% 30-50% <30% ≥20 x 109/L 28 3 2 10-19 x 109/L 5 1 0 <10 x 109/L 1 1 0 Disclosures Szkotak: Alexion Pharmaceuticals: Research Funding. Sandhu:Celgene: Honoraria; Jansen: Honoraria; Novartis: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 219-219
Author(s):  
Angela Huynh ◽  
Donald M. Arnold ◽  
John G. Kelton ◽  
Rumi Clare ◽  
Marina Ivanova ◽  
...  

Introduction: Heparin-induced thrombocytopenia (HIT) is an adverse drug reaction that occurs when heparin binds to platelet factor 4 (PF4) forming immunogenic complexes. Anti-PF4/heparin IgG antibodies bind PF4/heparin complexes, leading to cross-linking of FcγRIIa receptors on platelets and FcγRI on monocytes, resulting in platelet activation, thrombocytopenia, and thrombosis. The current diagnostic challenge is that the majority of patients suspected of HIT yield false-positive results in immunoassays, since up to 50% of patients will make anti-PF4/heparin antibodies but will not develop HIT. The antibody response in HIT patients is polyclonal, making it difficult to identify a common pathogenic epitope. The disparities between anti-PF4/heparin antibodies that activate platelets (pathogenic HIT antibodies) and those that do not (non-pathogenic anti-PF4/heparin antibodies) present a significant challenge in diagnosing HIT. The objective of this study was to map and characterize the critical immunodominant region on PF4 for the binding of pathogenic antibodies in confirmed HIT patients. Methods: We used sera with anti-PF4/heparin antibodies from patients with confirmed HIT (n=10). Post-cardiopulmonary bypass patients (CPB; n=10) and healthy individuals (n=10) were used as controls. Confirmed HIT patients met clinical criteria (4Ts ≥ 4) and tested positive in both the anti-PF4 IgG/A/M immunoassay (OD &gt; 0.4; range 2.33 - 3.90) and in the serotonin release assay (SRA release &gt; 20%; range 88-100%). CPB patients all received heparin but did not develop HIT, tested positive in the anti-PF4 IgG/A/M immunoassay (OD &gt; 0.4; range 0.42 - 2.73), and tested negative in the SRA (SRA release &lt; 20%; range 0-18%). We previously used alanine scanning mutagenesis and identified 30 amino acids that were on the surface of PF4 and were likely a part of the region essential for the binding of pathogenic HIT antibodies. From those results, we used the panel of 30 PF4 mutants and tested their ability to bind to HIT, CPB, and healthy control sera. Loss of binding to PF4 mutants was applied to in-silico structural analysis to determine binding regions specific for pathogenic and non-pathogenic antibodies. We also determined binding affinities of pathogenic and non-pathogenic anti-PF4/heparin antibodies using biolayer interferometry (BLI). Results: When 30 PF4 mutants were used to test the effect of the amino acid changes on the binding of HIT and CPB patient sera, an average of 8 different PF4 mutants resulted in more than 35% loss of binding to confirmed HIT sera when compared to wild-type PF4. None of the 30 PF4 mutants resulted in more than 35% loss of binding to CPB sera. Structural analysis demonstrated that the amino acids of PF4 that significantly affected the binding of HIT sera, but not CPB sera, were clustered to a specific region on PF4, similar to the region of KKO, but with varying epitopes. Using BLI, anti-PF4/heparin antibodies of confirmed HIT patients had a stronger binding response to PF4 and PF4/heparin than that of CPB patients and healthy controls. Overall, we were able to show a significant difference between confirmed HIT sera and the false-positive antibodies of CPB patients that did not develop HIT (P &lt; 0.01). Conclusion: This work shows that among the polyclonal response in HIT, pathogenic HIT antibodies must bind to the critical immunodominant region on PF4 with high affinity. This ensures the proper spatial configuration of the antibodies for Fc-receptor cross-linking, platelet activation, and subsequently HIT. This study has implications for the development of novel epitope-targeted diagnostic and therapeutic approaches for HIT. Disclosures Arnold: Novartis: Honoraria, Research Funding; Rigel: Consultancy, Research Funding; Principia: Consultancy; Bristol-Myers Squibb: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document