Microrna Expression and Drug-Induced Changes in Gene Expression Correlate with Ara-C Chemosensitivity in AML Cell Lines

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3623-3623 ◽  
Author(s):  
Neha S Bhise ◽  
Vishal Lamba ◽  
Jatinder Lamba

Abstract Abstract: Acute myeloid leukemia (AML) is a heterogeneous disorder, which is characterized by chromosomal abnormalities and genetic alterations. Cytarabine (Ara-C) is the most commonly used nucleoside analog for treatment of AML. However, the use of Ara-C is associated with two important clinical complications namely, inter-patient variability in response and development of intrinsic resistance. The inter-patient variability in response can be partly associated with polymorphisms in proteins that are required for intracellular uptake and activation of Ara-C to its phosphorylated form. Apart from genetic polymorphisms, expression of proteins involved in the uptake, activation, and inactivation of Ara-C have been shown to correlate with the overall patient survival. Over the past decade, various studies have identified microRNAs as important post-transcriptional regulators of gene expression. However, there are no studies till date that have identified key miRNAs involved in regulation of Ara-C pathway genes. Identification of these miRNAs will help in targeting these miRNAs to further understand inter-patient differences in gene expression. Additionally, drugs can also influence gene expression. However, there is critical gap in literature regarding role of Ara-C in inducing changes in gene expression. Understanding the dynamics of gene expression due to miRNAs and drug-induced changes would help open new opportunities for development of improved treatment strategies. Thus, the objective of this study is to understand the role of microRNAs in altering cytarabine cytotoxicity by influencing expression of pharmacokinetics (PK) and pharmacodynamics (PD) genes (n=18) in AML cell lines representing different risk groups. We evaluated genome-wide miRNA expression in 7 AML cell lines from different risk groups (favorable risk group: Kasumi-1, ME-1; intermediate risk group: AML-193, KG-1; adverse risk group: HL-60, MV-4-11, MOLM-16). We also evaluated the impact of cytarabine-induced gene expression changes in these AML cell lines. The gene expression changes were correlated with the in vitro chemosensitivity. Our preliminary results indicate that there was a significant correlation between the baseline miRNA expression for 16 miRNAs and Ara-C IC50 values (selected shown in Figure 1). We also observed that 57 microRNAs were associated with gene expression levels of the selected 18 Ara-C pharmacogenes (selected shown in Figure 1). Four miRNAs (miR-425-5p, miR-517a-3p, miR-519b-5p+hsa-miR-519c-5p, miR-522-3p) were found to be significantly associated with both gene expression and Ara-C IC50 values. We found that there were significant changes in gene expression of Ara-C pathway genes following treatment with 1uM or 10uM Ara-C. Briefly, there were significant changes in DCK, SLC29A1, CTPS1, CMPK1, NME1 and XRCC1 expression when treated with 10uM Ara-C and RRM2, NME1 and XRCC1 expression when treated with 1uM Ara-C. In conclusion, drug-induced changes in gene expression and miRNAs expression were found to correlate with chemosensitivity of AML cell lines. The preliminary results from our study help provide an insight into potential/additional molecular mechanisms associated with resistance observed in AML patients. Such knowledge is clinically significant, as identification of factors that contribute to the variable drug response would help in understanding and thus improving the variability in efficacy associated with cytarabine therapy. Disclosures No relevant conflicts of interest to declare.

2012 ◽  
Vol 3 ◽  
Author(s):  
Jodi E. Eipper-Mains ◽  
Betty A. Eipper ◽  
Richard E. Mains

2020 ◽  
Author(s):  
Alexander C. West ◽  
Yasutaka Mizoro ◽  
Shona H. Wood ◽  
Louise M. Ince ◽  
Marianne Iversen ◽  
...  

AbstractAnadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, the extending photoperiods of spring stimulates smoltification, typified by radical reprogramming of the gill from an ion-absorbing organ to ion-excreting organ. Prior work has highlighted the role of specialized “mitochondrion-rich” cells in delivering this phenotype. However, transcriptomic studies identify thousands of smoltification-driven differentially regulated genes, indicating that smoltification causes a multifaceted, multicellular change; but direct evidence of this is lacking.Here, we use single-nuclei RNAseq to characterize the Atlantic salmon gill during smoltification and seawater transfer. We identify 20 distinct clusters of nuclei, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-induced changes in gene expression. We also show how cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify a reduction of several immune-related cells. Overall, our results provide unrivaled detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming directly preceding seawater entry.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Song ◽  
Roded Sharan ◽  
Ivan Ovcharenko

Abstract Background Robustness and evolutionary stability of gene expression in the human genome are established by an array of redundant enhancers. Results Using Hi-C data in multiple cell lines, we report a comprehensive map of promoters and active enhancers connected by chromatin contacts, spanning 9000 enhancer chains in 4 human cell lines associated with 2600 human genes. We find that the first enhancer in a chain that directly contacts the target promoter is commonly located at a greater genomic distance from the promoter than the second enhancer in a chain, 96 kb vs. 45 kb, respectively. The first enhancer also features higher similarity to the promoter in terms of tissue specificity and higher enrichment of loop factors, suggestive of a stable primary contact with the promoter. In contrast, a chain of enhancers which connects to the target promoter through a neutral DNA segment instead of an enhancer is associated with a significant decrease in target gene expression, suggesting an important role of the first enhancer in initiating transcription using the target promoter and bridging the promoter with other regulatory elements in the locus. Conclusions The widespread chained structure of gene enhancers in humans reveals that the primary, critical enhancer is distal, commonly located further away than other enhancers. This first, distal enhancer establishes contacts with multiple regulatory elements and safeguards a complex regulatory program of its target gene.


2002 ◽  
Vol 366 (2) ◽  
pp. 633-641 ◽  
Author(s):  
Yuanfang LIU ◽  
Wei SHEN ◽  
Patricia L. BRUBAKER ◽  
Klaus H. KAESTNER ◽  
Daniel J. DRUCKER

Members of the Forkhead box a (Foxa) transcription factor family are expressed in the liver, pancreatic islets and intestine and both Foxa1 and Foxa2 regulate proglucagon gene transcription. As Foxa proteins exhibit overlapping DNA-binding specificities, we examined the role of Foxa3 [hepatocyte nuclear factor (HNF)-3γ] in control of proglucagon gene expression. Foxa3 was detected by reverse transcriptase PCR in glucagon-producing cell lines and binds to the rat proglucagon gene G2 promoter element in GLUTag enteroendocrine cells. Although Foxa3 increased rat proglucagon promoter activity in BHK fibroblasts, augmentation of Foxa3 expression did not increase proglucagon promoter activity in GLUTag cells. Furthermore, adenoviral Foxa3 expression did not affect endogenous proglucagon gene expression in islet or intestinal endocrine cell lines. Although Foxa3-/- mice exhibit mild hypoglycaemia during a prolonged fast, the levels of proglucagon-derived peptides and proglucagon mRNA transcripts were comparable in tissues from wild-type and Foxa3-/- mice. These findings identify Foxa3 as a member of the proglucagon gene G2 element binding-protein family that, unlike Foxa1, is not essential for control of islet or intestinal proglucagon gene expression in vivo.


2011 ◽  
Vol 404 (1) ◽  
pp. 376-381 ◽  
Author(s):  
Paolo Convertini ◽  
Vittoria Infantino ◽  
Faustino Bisaccia ◽  
Ferdinando Palmieri ◽  
Vito Iacobazzi
Keyword(s):  

1988 ◽  
Vol 168 (4) ◽  
pp. 1363-1381 ◽  
Author(s):  
J Manz ◽  
K Denis ◽  
O Witte ◽  
R Brinster ◽  
U Storb

Previous work (6-10) has shown that allelic exclusion of Ig gene expression is controlled by functionally rearranged mu and kappa genes. This report deals with the comparison of membrane mu (micron) and secreted mu (microsecond) in promoting such feedback inhibition. Splenic B cell hybridomas were analyzed from transgenic mice harboring a rearranged kappa gene alone or in combination with either an intact rearranged mu gene or a truncated version of the mu gene. The intact mu gene is capable of producing both membrane and secreted forms of the protein, while the truncated version can only encode the secreted form. The role of the microsecond was also tested in pre-B cell lines. Analysis of the extent of endogenous Ig gene rearrangement revealed that (a) the production of micron together with kappa can terminate Ig gene rearrangement; (b) microsecond with kappa does not have this feedback effect; (c) microsecond may interfere with the effect of micron and kappa; and (d) the feedback shown here probably represents a complete shutoff of the specific recombinase by micron + kappa; the data do not address the question of mu alone affecting the accessibility of H genes for rearrangement.


Sign in / Sign up

Export Citation Format

Share Document