scholarly journals Cflar Splicing SNP As Predictor of Chemo-Sensitivity to Anticancer Drugs

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2056-2056
Author(s):  
Lata Chauhan ◽  
Emilie J Bergsma ◽  
Jatinder K Lamba

Abstract Background: Anticancer therapeutics leverages activation of apoptosis signal transduction pathways (extrinsic and intrinsic apoptotic pathways) in cancer cells. Apoptosis induced by the extrinsic pathway complements that induced by the intrinsic pathway, so targeting extrinsic pathway is considered a useful new therapeutic approach. Preclinical data suggests TNF related apoptosis inducing ligand (TRAIL) as a promising approach as apoptosis of tumor cells is achievable in vivo without lethal toxicities. CASP8 and FADD-like apoptosis regulator (CFLAR) is an inhibitor of death receptor signaling that inhibits TRAIL-mediated caspase 8 auto-activation and subsequent apoptosis. We recently identified a splicing single nucleotide polymorphism (SNP) rs10190751 G>A in CFLAR, where presence of the variant allele (A) was associated with alternate splicing as well as with chemo-sensitivity to chemotherapeutic agent triptolide. However role of CFLAR and the splicing SNP on chemo-sensitivity to wide array of anticancer drugs is not known. Objective: Given the central role of CFLAR in apoptotic pathway, the goal of this study was to investigate impact of CFLAR and its splicing SNP on cytotoxicity of wide range of chemotherapeutic drugs including the ones extensively used in hematological malignancies. Methods: We selected chemotherapeutic agents with wide range of mechanisms of action as blocking DNA biosynthesis, interfering with structure or function of DNA or protein synthesis, interfering with DNA transcription or replication as well as drugs that are cell cycle specific or not. We selected nine Epstein-Barr-virus transformed lymphoblastoid cell lines (LCLs) that are part of International HapMap project representing different genotype for rs10190751 (CFLAR splicing polymorphism; 3 in each genotype category) with twelve different chemotherapeutic agents. Further validation of CFLAR's role in in vitro chemosensitivity was evaluated using CFLAR knockdown and overexpression studies in pancreatic and leukemic cell lines such as Panc-1 and THP1. Results: CFLAR splicing SNP rs10190751, was associated with in vitro cytotoxicity of several chemotherapeutic agents (Bortezomib, SAHA, doxorubicin, sorafenib). The results of screening of 122 FDA approved drugs and their relation with CFLAR as well as its splicing SNP will be presented at the annual meeting. As an example we show below that knock down of CFLAR isoforms have a significant impact on in vitro chemosensitivity to bortezomib and SAHA (Figure 1) Conclusion: Our results suggest critical role of CFLAR in anticancer drug mediated cell death. Additionally splicing SNP in CFLAR seems to play an important role in drug sensitivity/resistance. Therapeutic strategies to directly or indirectly inhibit the expression and/or function of CFLAR might be an attractive option to overcome resistance to wide range of chemotherapeutic agents. Figure 1. Impact of siRNA mediated knockdown or of CFLAR on Bortezomib and SAHA sensitivity in THP1 and Panc-1 cancer cell line. Figure 1. Impact of siRNA mediated knockdown or of CFLAR on Bortezomib and SAHA sensitivity in THP1 and Panc-1 cancer cell line. Disclosures No relevant conflicts of interest to declare.

2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


2021 ◽  
Author(s):  
Maged Mostafa Mahmoud ◽  
Ahmed M. Al-Hejin ◽  
Turki S. Abujamel ◽  
Modhi Alenezi ◽  
Fadwa Aljoud ◽  
...  

Abstract This study served as the pioneer in studying the anti-cancer role of chicken cathelicidin peptides. Chicken cathelicidins were used as anticancer agent against the breast cancer cell line (MCF-7) and human colon cancer cell line (HCT116). An in vivo investigation was also achieved to evaluate the role of chicken cathelicidin in Ehrlich ascites cell (EAC) suppression as a tumor model after subcutaneous implantation in mice. In addition, the mechanism of action of the interaction of cationic peptides with breast cancer cell line MCF-7 was also investigated. It was found during the study that exposure of cell lines to higher concentration of chicken cathelicidin for 72 h reduced cell lines growth rate by 90%-95%. These peptides demonstrated down-regulation of (cyclin A1 and cyclin D genes) which are essential for G1/S phase transient and S/G2 phase and consequently causes “prometaphase arrest” ultimately leading to death of MCF-7 cells. The study showed two- and three-times higher expression of the caspase-3, and − 7 genes respectively in MCF-7 cells treated with chicken peptides (especially cathelicidin-2 and − 3) relative to untreated cells which encouraged pro-apoptotic pathway, autophagy, and augmentation of the anti-proliferative activity. Our data showed that chicken ( CATH-1 ) enhance releasing of TNFα, INF-γ and upregulation of granzyme K in treated mice groups, in parallel, the tumor size and volume was reduced in the treated EAC-bearing groups after cathelicidin administration compared to untreated EAC-bearing group. Additionally, animals received high dose of cathelicidin-1 (40 µg/ml) displayed an apical survival rate compared to untreated carcinoma control and animals which received low dose of cathelicidin (10 and 20 µg/ml). Tumor of mice groups treated with chicken cathelicidin displayed high area of necrosis compared to untreated EAC-bearing mice. Based on histological analysis and immunohistochemical staining revealed that the tumor section in Ehrlich solid tumor exhibited a strong Bcl2 expression in untreated control compared to mice treated with 10 & 20 µg/ml of cathelicidin. Interestingly, low expression of Bcl2 were observed in mice taken 40 µg/ml of CATH-1. This study drive intention in treatment of cancer through the efficacy of anticancer efficacy of chicken cathelicidin peptides.


Author(s):  
Mahak Fatima ◽  
M. Mubasshar Iqbal Ahmed ◽  
Faiza Batool ◽  
Anjum Riaz ◽  
Moazzam Ali ◽  
...  

A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines towards gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent. After transfection, gene expression of DmdNKΔC20 was confirmed by reverse transcription quantitative PCR (qRT-PCR) and the combined effect of DmdNKΔC20 and gemcitabine based cytotoxicity was observed by cell viability assay. We further evolved a gemcitabine-resistant breast cancer cell line (named MCF7-R) through directed evolution in the laboratory, which showed 375-fold more resistance compared to parental MCF7 cells. Upon transfection with DmdNKΔC20 gene, MCF7-R cells showed 83-fold higher sensitivity to gemcitabine compared to the control group of MCF7-R cells. Moreover, we observed 79% higher expression of p21 protein in transfected MCF7-R cells, which may indicate induction of apoptosis. Our findings highlight the importance and therapeutic potential of DmdNKΔC20 in combined gene/chemotherapy approach to target a wide range of cancers, particularly gemcitabine-resistant cancers.


2008 ◽  
Vol 3 (10) ◽  
pp. 1934578X0800301 ◽  
Author(s):  
Fabiola Salas ◽  
Janne Rojas ◽  
Antonio Morales ◽  
Maria E. Ramos-Nino ◽  
Nelida G. Colmenares

Sesamin extracted from Vismia baccifera var. dealbata was demonstrated to have cytostatic activity on the cancer cell lines tested, particularly the lung cancer cell line, with an IC50 of 1 g/L.


Author(s):  
Shuchi Dave Mehta ◽  
Sarvesh Paliwal

 Objective: The objective of the present study is to evaluate in vitro anticancer property and phytochemical analysis using liquid chromatography and mass spectroscopy (LCMS) method of hydroalcoholic extract of seeds of Annona squamosa (AS) Linn. Seeds of AS Linn. are traditional medicine treating various diseases and have shown anticancer activity. Due to lack of survival benefit, cancer is a deadly global disease.Method: The anticancer activity was evaluated using the sulforhodamine B assay method on five cancer cell lines: Breast cancer cell line, cervix cancer cell line (SiHa), colon cancer cell line (HT)-29, liver cancer cell line, and ovary cancer cell line (Ovcar). The phytochemical analysis was performed using LCMS method.Result: The phytochemical characterization was done using LCMS method which showed 15 different molecular weight compounds. The extract showed an average in vitro anticancer activity at a concentration of 100 μg/ml against all cancer cell lines. The best activity was observed against Ovcar-5 cell line (69.72) and was also significant against HT and SiHa cell lines.Conclusion: The phytochemical analysis showed the wide range of phenols and flavonoid which are showing potent anticancer activity of AS seeds.


2022 ◽  
Vol 11 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Anees Pangal ◽  
Yusufi Mujahid ◽  
Bajarang Desai ◽  
Javed A. Shaikh ◽  
Khursheed Ahmed

Under solvent free conditions and in presence of a base 3-(2-(subsituted-(trifluoromethyl)phenylamino)acetyl)-2H-chromen-2-one derivatives were synthesized by grinding technique. Structural investigations were carried out with IR studies, HRMS, 1HNMR and 13CNMR. The compounds were checked for their in vitro anticancer activities against three different human cancer cell lines viz human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human oral squamous cell carcinoma (SCC-40) using SRB method. All the title compounds showed low toxicity towards non-malignant PBMC cells indicating their tumour selectivity. The compounds exhibited good in vitro anti-proliferative potency at lower concentrations against HeLa and MCF-7 cell lines and remain moderately active against SCC-40.


2013 ◽  
Vol 7 (1) ◽  
pp. 5-13
Author(s):  
Israa Sekar Salmman

Leaves of Ocimum basilicum were extracted with distilled water to prepare aquatic crude extract, five concentration from this extract (1000, 500, 250, 125, 62.5)µg/ml were used to study the effect of extract on cancer cell lines(Larynex carcinoma hep-2, cervix carcinoma Hela and mammary gland adenocarcinoma AMN-3) and the time exposure 24 and 48 hours as well as the effect of aquous extract on normal cell line for embryonic mice fibroblast(MEF) was studied in vitro at 48hrs. exposure. The result showed that aqueous crude extract of Ocimum basilicum leaves has different effects on cancer cell lines with significante p<0.05 the high concentration 1000 µg/ml has more inhibitory effect on cancer cell line Hep-2 compared with low concentration at 24and 48 hrs.while the Hela cancer cell line has hormetic effect which recognized by contrast in low concentration inhibitory effect as compared with high concentration at 24 and 48 hr.that low ones inhibit cell proliferation while in high ones cell proliferation continue, but AMN-3 cancer cell line more affected by low concentrations from high concentrations. Normal cell line show no significant effect for all concentrations used of aquatic crude extract of Ocimum basilicum leaf except 62.5 µg/ml with high cell inhibition 16%.


2020 ◽  
Vol 19 (1) ◽  
pp. 25-28
Author(s):  
Suciati ◽  
Lusiana Arifianti

Marine sponges have been known as the source of natural products. Various metabolites with potent bioactivities have been reported from this organism. The current study aims to investigate the anticancer potency of three marine sponges namely Diacarnus debeauforti, Haliclona amboinensis and Agelas cavernosa collected from Barrang Lompo Island, South Sulawesi, Indonesia. The ethyl acetate extracts of the sponges were screened against T47D breast cancer cells and HeLa cervical cancer cells by using the MTT method. The results showed that these sponges demonstrated anticancer activity against both cancer cell lines. The lowest IC50 of 18.2 μg/ml was given by the extract of A. cavernosa against T47D cell line, while in the screening against HeLa cancer cell line, the extract of D. debeauforti revealed the highest potency with IC50 of 15.7 μg/ml. Our results suggested that the marine sponges namely D. debeauforti, H. amboinensis and A. cavernosa can be good candidates for the development of anticancer agents. Dhaka Univ. J. Pharm. Sci. 19(1): 25-28, 2020 (June)


2020 ◽  
pp. 1-6
Author(s):  
Alain Couvineau ◽  
S. Dayot ◽  
V. Gratio ◽  
P. Nicole ◽  
T. Voisin ◽  
...  

Colorectal cancer, which is the third most common cancer, is the main cause of digestive cancer death. Previous studies have demonstrated that orexins, hypothalamic neuropeptides involved in sleep and food intake regulations, have anti-tumoral properties in digestive cancers. In the present work, we investigated the anti-tumoral role of an orexin antagonist, almorexant, in colon cancer. The anti-tumoral role of almorexant has been determined by in vitro and in vivo studies using HT-29 colon cancer cell line, which expressed endogenous orexin receptor 1 subtype (OX1R). Our in vitro study indicated that almorexant was able to reduce HT-29 cell viability by induction of mitochondrial apoptosis involving the tyrosine phosphatase SHP2 and the p38 signaling pathways. In contrast, no effect was observed in the colon cancer cell line HCT-116, which does not express OX1R, demonstrating that the anti-tumoral effect of almorexant was mediated by OX1R. When HT-29 cells were xenografted in nude mice, the administration of almorexant strongly reduced the tumor development with a potency similar to orexin. Our study supports that almorexant, a small molecule analog of orexin peptide, could represent a putative candidate in the treatment of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document