scholarly journals PHYTOCHEMICAL ANALYSIS, LIQUID CHROMATOGRAPHY, AND MASS SPECTROSCOPY AND IN VITRO ANTICANCER ACTIVITY OF ANNONA SQUAMOSA SEEDS LINN.

Author(s):  
Shuchi Dave Mehta ◽  
Sarvesh Paliwal

 Objective: The objective of the present study is to evaluate in vitro anticancer property and phytochemical analysis using liquid chromatography and mass spectroscopy (LCMS) method of hydroalcoholic extract of seeds of Annona squamosa (AS) Linn. Seeds of AS Linn. are traditional medicine treating various diseases and have shown anticancer activity. Due to lack of survival benefit, cancer is a deadly global disease.Method: The anticancer activity was evaluated using the sulforhodamine B assay method on five cancer cell lines: Breast cancer cell line, cervix cancer cell line (SiHa), colon cancer cell line (HT)-29, liver cancer cell line, and ovary cancer cell line (Ovcar). The phytochemical analysis was performed using LCMS method.Result: The phytochemical characterization was done using LCMS method which showed 15 different molecular weight compounds. The extract showed an average in vitro anticancer activity at a concentration of 100 μg/ml against all cancer cell lines. The best activity was observed against Ovcar-5 cell line (69.72) and was also significant against HT and SiHa cell lines.Conclusion: The phytochemical analysis showed the wide range of phenols and flavonoid which are showing potent anticancer activity of AS seeds.

2020 ◽  
Vol 19 (1) ◽  
pp. 25-28
Author(s):  
Suciati ◽  
Lusiana Arifianti

Marine sponges have been known as the source of natural products. Various metabolites with potent bioactivities have been reported from this organism. The current study aims to investigate the anticancer potency of three marine sponges namely Diacarnus debeauforti, Haliclona amboinensis and Agelas cavernosa collected from Barrang Lompo Island, South Sulawesi, Indonesia. The ethyl acetate extracts of the sponges were screened against T47D breast cancer cells and HeLa cervical cancer cells by using the MTT method. The results showed that these sponges demonstrated anticancer activity against both cancer cell lines. The lowest IC50 of 18.2 μg/ml was given by the extract of A. cavernosa against T47D cell line, while in the screening against HeLa cancer cell line, the extract of D. debeauforti revealed the highest potency with IC50 of 15.7 μg/ml. Our results suggested that the marine sponges namely D. debeauforti, H. amboinensis and A. cavernosa can be good candidates for the development of anticancer agents. Dhaka Univ. J. Pharm. Sci. 19(1): 25-28, 2020 (June)


2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


2020 ◽  
Author(s):  
Md. Nur Alam ◽  
Mohammad Moni ◽  
Jun Yu ◽  
Philip Beale ◽  
Peter Turner ◽  
...  

Abstract Due to similar coordination chemistry of palladium and platinum, a large number of palladium compounds too have been investigated for their anticancer activity. In the present study we describe synthesis, characterization and anticancer activity of palladium complex [Bis(1,8-quinolato)palladium (II)], coded as NH3 against seven different cancer cell lines. NH3 is found to have higher antitumour activity than cisplatin against both parent ovarian A2780 cell line and cisplatin-resistant cell lines. Also, NH3 has the lowest IC50 value against HT-29 colorectal cancer cell line. The higher antitumour activity of NH3 is due to the presence of bulky 8-hydroxy-quinoline ligand thus reducing its reactivity. Proteomic study has identified significantly expressed proteins which have been validated through bioinformatics. NH3 has been found to be less toxic than cisplatin at 2.5 mg/kg and 5 mg/kg dosages on mice models. Binary combinations of NH3 with curcumin and epigallocatechin gallate (EGCG) have demonstrated dose and sequence dependent synergism in ovarian and colorectal cancer models. All of the preclinical studies indicate promising therapeutic potentiality of NH3 [Bis(1,8-quinolato)palladium (II) ] as an anticancer drug.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1039
Author(s):  
Michał Sulik ◽  
Ewa Maj ◽  
Joanna Wietrzyk ◽  
Adam Huczyński ◽  
Michał Antoszczak

Polyether ionophores represent a group of natural lipid-soluble biomolecules with a broad spectrum of bioactivity, ranging from antibacterial to anticancer activity. Three seem to be particularly interesting in this context, namely lasalocid acid, monensin, and salinomycin, as they are able to selectively target cancer cells of various origin including cancer stem cells. Due to their potent biological activity and abundant availability, some research groups around the world have successfully followed semi-synthetic approaches to generate original derivatives of ionophores. However, a definitely less explored avenue is the synthesis and functional evaluation of their multivalent structures. Thus, in this paper, we describe the synthetic access to a series of original homo- and heterodimers of polyether ionophores, in which (i) two salinomycin molecules are joined through triazole linkers, or (ii) salinomycin is combined with lasalocid acid, monensin, or betulinic acid partners to form ‘mixed’ dimeric structures. Of note, all 11 products were tested in vitro for their antiproliferative activity against a panel of six cancer cell lines including the doxorubicin resistant colon adenocarcinoma LoVo/DX cell line; five dimers (14–15, 17–18 and 22) were identified to be more potent than the reference agents (i.e., both parent compound(s) and commonly used cytostatic drugs) in selective targeting of various types of cancer. Dimers 16 and 21 were also found to effectively overcome the resistance of the LoVo/DX cancer cell line.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2056-2056
Author(s):  
Lata Chauhan ◽  
Emilie J Bergsma ◽  
Jatinder K Lamba

Abstract Background: Anticancer therapeutics leverages activation of apoptosis signal transduction pathways (extrinsic and intrinsic apoptotic pathways) in cancer cells. Apoptosis induced by the extrinsic pathway complements that induced by the intrinsic pathway, so targeting extrinsic pathway is considered a useful new therapeutic approach. Preclinical data suggests TNF related apoptosis inducing ligand (TRAIL) as a promising approach as apoptosis of tumor cells is achievable in vivo without lethal toxicities. CASP8 and FADD-like apoptosis regulator (CFLAR) is an inhibitor of death receptor signaling that inhibits TRAIL-mediated caspase 8 auto-activation and subsequent apoptosis. We recently identified a splicing single nucleotide polymorphism (SNP) rs10190751 G>A in CFLAR, where presence of the variant allele (A) was associated with alternate splicing as well as with chemo-sensitivity to chemotherapeutic agent triptolide. However role of CFLAR and the splicing SNP on chemo-sensitivity to wide array of anticancer drugs is not known. Objective: Given the central role of CFLAR in apoptotic pathway, the goal of this study was to investigate impact of CFLAR and its splicing SNP on cytotoxicity of wide range of chemotherapeutic drugs including the ones extensively used in hematological malignancies. Methods: We selected chemotherapeutic agents with wide range of mechanisms of action as blocking DNA biosynthesis, interfering with structure or function of DNA or protein synthesis, interfering with DNA transcription or replication as well as drugs that are cell cycle specific or not. We selected nine Epstein-Barr-virus transformed lymphoblastoid cell lines (LCLs) that are part of International HapMap project representing different genotype for rs10190751 (CFLAR splicing polymorphism; 3 in each genotype category) with twelve different chemotherapeutic agents. Further validation of CFLAR's role in in vitro chemosensitivity was evaluated using CFLAR knockdown and overexpression studies in pancreatic and leukemic cell lines such as Panc-1 and THP1. Results: CFLAR splicing SNP rs10190751, was associated with in vitro cytotoxicity of several chemotherapeutic agents (Bortezomib, SAHA, doxorubicin, sorafenib). The results of screening of 122 FDA approved drugs and their relation with CFLAR as well as its splicing SNP will be presented at the annual meeting. As an example we show below that knock down of CFLAR isoforms have a significant impact on in vitro chemosensitivity to bortezomib and SAHA (Figure 1) Conclusion: Our results suggest critical role of CFLAR in anticancer drug mediated cell death. Additionally splicing SNP in CFLAR seems to play an important role in drug sensitivity/resistance. Therapeutic strategies to directly or indirectly inhibit the expression and/or function of CFLAR might be an attractive option to overcome resistance to wide range of chemotherapeutic agents. Figure 1. Impact of siRNA mediated knockdown or of CFLAR on Bortezomib and SAHA sensitivity in THP1 and Panc-1 cancer cell line. Figure 1. Impact of siRNA mediated knockdown or of CFLAR on Bortezomib and SAHA sensitivity in THP1 and Panc-1 cancer cell line. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 16 ◽  
Author(s):  
Stephen Paul Avvaru ◽  
Malleshappa N. Noolvi ◽  
Uttam A More ◽  
Sudipta Chakraborty ◽  
Ashutosh Dash ◽  
...  

Background: A great array of nitrogen-containing heterocyclic rings were being extensively explored for their functional versatility in the field of medicine especially in anticancer research. 1,3,4-thiadiazole is one of such heterocyclic ring with promising anticancer activity against several cancer cell lines, inhibiting diverse biological targets. Introduction: The 1,3,4-thiadiazole, when equipped with other heterocyclic scaffolds, has displayed enhanced anticancer properties. The thiourea, benzothiazole, imidazo[2,1,b][1,3,4]-thiadiazoles are such potential scaffolds with promising anticancer activity. Method: A new series of 5-substituted-1,3,4-thiadiazoles linked with phenyl thiourea, benzothiazole and 2,6-disubstituted imidazo[2,1- b][1,3,4]thiadiazole derivatives were synthesized and tested for in-vitro anticancer activity on various cancer cell lines. Results: The National Cancer Institute’s preliminary anticancer screening results showed compounds 4b and 5b having potent antileukemic activity. Compound 4b selectively showed 32 percent lethality on Human Leukemia-60 cell line. The docking studies of the derivatives on aromatase enzyme (Protein Data Bank: 3S7S) have shown reversible interactions at the active site with good docking scores comparable to Letrozole and Exemestane. Further, the selected derivatives were tested for anticancer activity on HeLa cell line based on the molecular docking studies. Conclusion: Compound 4b and 5b showed effective inhibition equivalent to Letrozole. These preliminary biological screening studies have given positive anticancer activity for these new classes of derivatives. An additional research study like the mechanism of action of the anticancer activity of this new class of compounds is necessary. These groundwork studies illuminate a future pathway for research of this class of compounds enabling the discovery of potent antitumor agents.


2017 ◽  
Vol 9 (6) ◽  
pp. 906-912 ◽  
Author(s):  
Sridevi I. Puranik ◽  
Shridhar C. Ghagane ◽  
Rajendra B. Nerli ◽  
Sunil S. Jalalpure ◽  
Murigendra B. Hiremath

Sign in / Sign up

Export Citation Format

Share Document