Immunomodulatory Drugs Inhibit H2O2 Decomposition in Multiple Myeloma Cells and Its Mediated Cytotoxicity Is Determined By Cellular Antioxidative Capacity

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2475-2475
Author(s):  
Sinto Sebastian Chirackal ◽  
Yuan Xiao Zhu ◽  
Esteban Braggio ◽  
Chang-Xin Shi ◽  
Sonali Panchabhai ◽  
...  

Abstract Introduction Lenalidomide is an immunomodulatory drug (IMID) used to treat Multiple Myeloma (MM). Although a role for cereblon (CRBN)-mediated degradation of Ikaros proteins (IKZF1 and IKZF3) has been shown, the complete molecular and biochemical mechanisms responsible for lenalidomide-mediated anti-MM activity and/or resistance are undiscovered. Therefore, we aimed to analyze whether IMIDs (thalidomide, lenalidomide, and pomalidomide) are inducing oxidative stress in MM and what determines these drugs varying sensitivity and/or resistance. Methodology Amplex Red Assay has been performed to analyze IMIDs-mediated inhibition of H2O2 decomposition in both, in-vitro and in-vivo assays. Lentiviruses were prepared in 293T cells for CRBN, IgL-λ & IgL-k, and Bim knockdown experiment. Quantification of MM cellular anti-oxidative capacity for determining IMID sensitivity was standardized with H2O2-mediated oxidation of FADH2 and NAD(P)H. To measure apoptosis and gene expression analysis 106 cells were incubated with lenalidomide for 24 to 96 hours before they were examined by annexin-PI and FACS analysis. Gene and protein expression were measured by RT-PCR, western blot, and immunohistochemistry. Results We discovered that IMIDs inhibit peroxidase-mediated decomposition of H2O2 in both, in vitro horseradish peroxidase (HRP) assays and in human MM cell lines (HMCLs). Of the IMIDs analyzed, pomalidomide was the more potent inhibitor. H2O2 treatment effectively degraded IKZF1 and IKZF3 in HMCLs. To confirm the central role of CRBN in IKZF1 and IKZF3 degradation by H2O2-induced oxidative stress, we used CRBN knockdown OPM2 isogeneic cells and the CRBN-overexpressing OCIMY-5 cell line. We treated both sets of isogenic cell lines with lenalidomide and H2O2 for 3 hours, and we showed that H2O2 similarly mediates IKZF1 and IKZF3 degradation in a CRBN-dependent fashion. Next, we tested viability of CRBN present and absent cell lines with increasing concentrations of lenalidomide and H2O2 for 3 days. Lenalidomide-induced cytotoxicity was CRBN dependent, but H2O2 was not after 3 days, as shown by MTT assays. The capacity of MM cells to decompose H2O2 was measured via a biochemical test that quantitatively measured cellular anti-oxidative capacity. IMID sensitivity was well correlated with cellular anti-oxidative capacity, likely, cells more efficiently decompose H2O2was resistant and cells were not sensitive to IMID. This result shows that antioxidant capacity determines lenalidomide sensitivity among HMCLs with similar CRBN protein expression. We discovered that lenalidomide-mediated cytotoxicity in MM was attributable to oxidative damage of intracellular immunoglobulin proteins. By using several sets of isogenic cells lines with and without CRBN expression, we confirmed that lenalidomide treatment caused accumulation of IgL dimers only in CRBN-positive cells. Lenalidomide-induced IgL dimerization lead to decreased secretion and consequent intracellular accumulation of IgL, as evidenced by unchanged IgL mRNA expression, increased total intracellular IgL protein, and decreased secretion of IgL. After 72 hours of lenalidomide treatment we found decreased XBP-1u, increased XBP-1s, and over-expressed GRP78/BiP endoplasmic reticulum stress (ERS) marker proteins in CRBN positive cells but not in CRBN knock-down cells. We observed Bim requirement, especially BimEL, after lenalidomide treatment in CRBN-positive lenalidomide-sensitive cells. Our data reveals that lenalidomide-mediated; progressive ERS can positively enhance bortezomib-induced apoptosis in an in-vitro MM model. We pretreated MM cells with lenalidomide and then treated them with bortezomib. OPM2 cells pretreated with lenalidomide for 2 days clearly showed increased sensitivity to bortezomib-induced apoptosis compared with cells that were not pretreated. Conclusion IMIDs inhibit H2O2 decomposition. Ikaros protein degradation is a consequence of H2O2 mediated oxidative stress. Therefore, cells producing high H2O2 and with less antioxidative capacity are more sensitive to IMIDs. On the basis of this discovery, we would be able to predict which patients will benefit from IMIDs-mediated therapy and develop new drugs other than IMIDs that can inhibit intracellular H2O2 decomposition in MM. At present, CRBN may be required for IMIDs to effectively inhibit H2O2decomposition. Disclosures Chirackal: Mayo Clinic: Patents & Royalties: Filed a professional US patent for quantifying cellular anti-oxidative capacity. Fonseca:Mayo Clinic: Patents & Royalties: Filed a professional US patent for quantifying cellular anti-oxidative capacity.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1562-1562 ◽  
Author(s):  
Noor M Khaskhely ◽  
Daniela Buglio ◽  
Jessica Shafer ◽  
Catherine M. Bollard ◽  
Anas Younes

Abstract Abstract 1562 Poster Board I-585 Purpose SNDX-275 is an oral, class 1 isoform selective HDACi. Phase 1 studies in leukemia demonstrated the agent has a long half-life and that weekly or every other week dosing is sufficient for antitumor activity. Based on recent favorable in vitro and in vivo activity of several HDAC inhibitors in HL, we investigated the in vitro activity of SNDX275 in HL-derived cell lines. Methods For apoptosis and gene expression analysis 05 × 106 cells were incubated with 0.1-2 μM of SNDX-275 for 24-72 hours before they were examined for proliferation and cell death by the MTS assay and the annexin-PI and FACS analysis. For combination studies, cells were incubated with 0.1-2 uM of SNDX-275 and 1-20 nM of either gemcitabine or bortezomib for 48-72 hours. Gene and protein expression were measured by RT-PCR, western blot, and immunohistochemistry. SNDX-275 effects on a panel of 30 cytokines and chemokines was assayed on 05 × 106 cells after incubation of 48 hrs using a multiplex assay. Results SNDX-275 induced cell death in a dose and time dependent manner with an IC50 of 0.4 μM. At the molecular level, SNDX-275 increased H3 acetylation, up-regulated p21 protein expression, and activated the intrinsic apoptosis pathway by down-regulating the anti-apoptotic X-linked inhibitor or apoptosis (XIAP) protein, which was associated with activation of caspase 9 and 3. Combination studies demonstrated that SNDX-275 had synergistic effects when combined with gemcitabine and bortezomib. To further investigate the potential for SNDX-275 activity in HL we measured the effect of SNDX-275 on pathways that may contribute to an anti-tumor immune response. Dysregulated cytokine/chemokine production has been shown to contribute to HL pathology, including immune tolerance of the cancer cells. SNDX-275 increased IL12 p40-70, IP10, and RANTES, and decreased the level of IL13 and IL4, thus favoring Th1-type cytokines/chemokines. In addition, recent data has demonstrated that a variety of epigenetic-modulating drugs may up-regulate the expression of cancer testis tumor associated antigens, leading to a favorable immune response. None of the lines expressed the CTAs without induction. SNDX275 was able to induce CTA expression of SSX2 in L428 but not HDLM2 whereas MAGE-A was induced in both HL cell lines. NY-ESO expression was not induced. Conclusions Our studies demonstrate that SNDS-275 has dual effect on apoptotic and immunomodulatory pathways in HL. Furthermore, this data demonstrates that SNDX-275 may upregulate CTAs suggesting that this treatment may render the tumor more immunogeneic and susceptible to immune mediated killing with tumor-specific cytotoxic T lymphocytes. The selectivity profile of SNDX-275 also suggests that HDAC1 and 2 are the primary targets for HDAC inhibition in these cells. Phase 2 studies with SNDX-275 in HL are ongoing. Disclosures Younes: MethylGene: Honoraria, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1831-1831 ◽  
Author(s):  
Michael Mangone ◽  
Luigi Scotto ◽  
Enrica Marchi ◽  
Owen A. O'Connor ◽  
Hearn J. Cho

Abstract Abstract 1831 Multiple myeloma (MM) is the second most common hematologic malignancy. Although there are effective new agents that can induce remission, relapse is inevitable and the disease is currently incurable. Progress in the treatment of this disease demands development of novel therapeutics and identification of functional biomarkers that may be used to distinguish tumors that are susceptible to specific targeted agents, creating a “personalized” therapeutic strategy for individual patients. We investigated these principles with anti-folates, which are not commonly used in MM but have demonstrated activity in this disease. Pralatrexate (PDX, 10-propargyl 10-deazaaminopterin) is a folate analogue that was rationally designed to have high affinity for Reduced Folate Carrier (RFC)-1, an oncofetal protein expressed in many cancers that actively transports folates into cells. PDX induced dose-dependent apoptotic cell death in a subset of human myeloma cell lines (HMCL) and CD138+ MM cells isolated from a clinical specimen. In sensitive cell lines, PDX exhibited 10-fold greater potency compared to the structurally related drug methotrexate (MTX). PDX induced dose-dependent, intrinsic apoptosis in sensitive HMCLs, characterized by cleavage of caspase-3 and -9 and accompanied by the loss of full-length Mcl-1, a Bcl-2 family protein that plays a critical role in drug-induced apoptosis in MM. Furthermore, the activity of PDX is not abrogated by the presence of exogenous interleukin-6 or by co-culture with HS-5 bone marrow stromal cells, both of which exert powerful survival effects on MM cells and can antagonize apoptosis in response to some cytotoxic chemotherapy drugs. Sensitivity to PDX-induced apoptosis correlated with higher relative levels of RFC-1 mRNA in sensitive compared to resistant HMCL. Resistant HMCL also exhibited a dose-dependent up-regulation of dihydrofolate reductase (DHFR) protein, a primary molecular target for anti-folates, in response to PDX exposure, whereas sensitive HMCL did not. These changes in functional folate metabolism biomarkers, high baseline RFC-1 expression and upregulation of DHFR in response to PDX, appeared to be mutually exclusive to sensitive or resistant HMCL, respectively. Importantly, PDX was also effective against sensitive HMCL in vivo in a novel mouse xenograft model. NOD/Shi-scid/IL-2Rγnull (NOG) mice were inoculated with MM.1s HMCL stably transduced to express both GFP and luciferase (GFP-luc). GFP-luc MM.1s cells engrafted into the long bones, pelvis, and vertebral column of NOG mice within 4–7 days after injection of cells, as assessed by in vivo bioluminescent imaging. Treatment with PDX resulted in a significant reduction in tumor burden after two doses. These results demonstrate that PDX has potent anti-myeloma activity in vitro and in vivo, and that RFC-1 expression and DHFR upregulation are robust functional biomarkers that may identify patients who are likely to benefit from PDX therapy. These data support further exploration of PDX therapy in clinical trials for MM and investigation of folate metabolism biomarkers as indices for treatment with this class of drugs. Improved anti-folates such as PDX are a promising class of agents that may be a valuable addition to the arsenal against MM. Disclosures: O'Connor: Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3023-3023
Author(s):  
Miyuki Ookura ◽  
Tatsuya Fujii ◽  
Shinji Kishi ◽  
Hiroko Shigemi ◽  
Naoko Hosono ◽  
...  

Abstract Multiple myeloma (MM) is a molecularly heterogeneous hematologic malignancy and remains mostly incurable despite the recent improvement of treatment strategies by several novel agents. Therefore, it is important to develop more efficacious drug against MM. YM155, a novel small molecule suppressant of survivin, shows anti-proliferative activities against various human cancer cells. YM155 was identified in a survivin gene promoter assay by high throughput screening of chemical libraries. In the present study, we investigated the cytotoxic mechanism of YM155 against human myeloma cells including bortezomib (BTZ) resistant cells (U266/BTZ). Three myeloma cell lines, U266, KMS-11 and KMS-12, were employed. YM155 inhibited the cell growth of these cell lines with the IC50 value of below 5 nM. YM155 suppressed the expression of mRNA and protein of survivin. We also found that YM155 inhibited the protein expression of Mcl-1, as an essential anti-apoptotic protein for survival of myeloma cells. In addition, we observed that YM155 markedly suppressed the phosphorylation of STAT3, which is known as transcription factor of Mcl-1. When KMS-12 cells were incubated with IL-6, phosphorylation of STAT3 and upregulation of Mcl-1 protein were observed. Treatment of KMS-12 with YM155 inhibited these events and eventually induced apoptosis in KMS-12 cells. Interestingly, inhibitory effect of YM155 on Mcl-1 protein expression was much stronger than that on survivin. RQ-PCR analysis indicated that the level of Mcl-1 mRNA was not affected after YM155 treatment. Immunoblot analysis showed that proteasome inhibitor MG-132 blocked the inhibition of Mcl-1 expression by YM155, suggesting that proteasome-mediated degradation is involved in YM155-induced Mcl-1 downregulation. MM is a low-growth-fraction disease and low proliferation of MM seems to contribute to resistance to various anticancer drugs. To determine whether YM155 shows cytotoxic effect against quiescent (G0/G1) MM cells, U266 were cultured in low-serum medium to enrich the G0/G1 population. Dual-parametric flow cytometric analysis using Hoechest33342 and the RNA specific dye pyronin Y revealed that YM155 potently induced cell death of quiescent (G0/G1) MM cells. In quiescent MM cells, inhibitory effect of YM155 on Mcl-1 protein expression was much stronger than that on survivin. We also examined whether similar effect of YM155 could be observed in primary MM cells. The majority of primary MM cells from patients was found to be in quiescent phase by cell-cycle analysis. YM155 showed similar cytotoxic activity against primary MM cells. In contrast, Ara-C, the S-phase specific anticancer drug, never killed quiescent primary MM cells. We established BTZ-resistant MM cell line (U266/BTZ). The IC50 value was 45-fold higher than its parental cell line. DNA sequencing data indicated that U266/BTZ cells possess a point mutation, G322A, in the gene encoding the proteasome beta-5 subunit. YM155 almost equally exhibited cytotoxic activity against U266/BTZ compared with parental cells. U266/BTZ displayed significantly lowered amounts of bcl-2, survivin and aurora-B kinase proteins. Interestingly, U266/BTZ overexpressed the Mcl-1 protein. Treatment with YM155 rapidly suppressed Mcl-1 protein expression and induced apoptosis. These data suggest that overexpression of Mcl-1 may contribute to bortezomib resistance and downregulation of Mcl-1 by YM155 could overcome it. In conclusion, our data indicate that YM155 may exert robust cytotoxic activity against quiescent (G0/G1) MM and bortezomib resistant cells via inhibition of Mcl-1 and survivin. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 247-247 ◽  
Author(s):  
Giada Bianchi ◽  
Laura Oliva ◽  
Paolo Cascio ◽  
Niccolo’ Pengo ◽  
Andrea Orsi ◽  
...  

Abstract Proteasome inhibitors (PI) proved to be extremely effective against different types of cancer, particularly against Multiple Myeloma (MM), a frequent and still incurable plasma cell malignancy. Phase II clinical trials showed that more than 50% of MM patients fail to respond to bortezomib, the only PI currently approved for clinical use. However, the mechanisms of action and bases of individual susceptibility to PI remain largely unclear, with no reliable predictor of response identified so far. Recent evidences linking proteasome activity and Ig synthesis to susceptibility to PI suggest that the exquisite sensitivity of MM cells (MMC) to PI might be explained by an imbalance between the efficiency of the ubiquitin (Ub)-proteasome pathway and the demand for proteasome-mediated degradation. We set out to explore this hypothesis both in vitro and ex vivo. To achieve this aim, we employed human MM cell lines characterized by differential apoptotic sensitivity to PI (U266 and RPMI8226, fairly resistant cell lines, versus MM.1S, an extremely sensitive one) and primary, patient derived MMC. In MM cell lines, we found that high apoptotic sensitivity to PI is associated with lower expression of active proteasomes (as assessed by decreased expression of cleaved catalytic subunits and enzymatic assays with fluorogenic substrates in cell extracts), together with higher proteasomal workload (demonstrated by higher proteasome-dependent loss of TCA-insoluble radioactivity in pulse-chase assays). Indeed, MM.1S cells displayed 2–3 times lower proteasomal activity as compared to the more resistant U266 and RPMI8226 cells, both on a per cell basis and upon normalization by protein content. Together with the reduced proteasome capacity, MM.1S cells showed a consistently higher production of client proteins for the Ub-proteasome pathway. Such an increased load appears to be the consequence of a higher production of Rapidly Degraded Polypeptides (RDP). These are newly synthesized proteins which are quickly redirected to proteasome-mediated degradation. The imbalance between proteasomal load and capacity results in remarkable accumulation of poly-Ub proteins at the expense of free Ub (as established by both western blotting and immunofluorescence), unveiling basal proteasome stress in PI-sensitive MMC. In order to establish a causal link between proteasome stress and sensitivity to PI, we pharmacologically modulated either proteasome expression or workload and successfully altered PI-induced apoptosis. As predicted, increasing proteasome workload by means of ER stressors (e.g. tunicamycin, thapsigargin, brefeldin A) dramatically enhances susceptibility to PI, while a raise in proteasomal activity (achieved by exploiting the proteasome stress response, an adaptive mechanism by which mammalian cells induce proteasome biogenesis in response to either decreased proteasome function or increased proteasomal demand), confers marked resistance to PI-induced apoptosis. Having established cause-effect relationships between determinants of proteasome stress and vulnerability to PI in vitro, we then asked if our model could be used to predict responsiveness to PI in MM patients. In keeping with this hypothesis, intracellular immunostaining in primary, patient-derived MMC reveals that accumulation of poly-Ub proteins specifically hallmarks neoplastic plasma cells, indicating that the cancer compartment in MM patients suffers from proteasome stress. Moreover, poly-Ub levels positively correlate with Ig content, both intra- and inter-patient, suggesting a direct effect of Ig synthesis and/or retention on proteasome functional load. Finally, overall proteasome activity of primary MMC inversely correlates with the intrinsic apoptotic sensitivity to PI as assessed ex vivo, providing a rationale for the assessment of this parameter as a potential predictor of the in vivo response to bortezomib or other PI. Altogether, our data indicate that the balance between proteasome workload and degradative capacity represents a critical determinant of apoptotic sensitivity of MMC to PI, providing both a novel predictive tool of potential prognostic value and the framework for novel combination therapies aimed at exacerbating proteasome stress in MM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5320-5320 ◽  
Author(s):  
Yuji Mishima ◽  
Michele Moschetta ◽  
Michaela R Reagan ◽  
Yong Zhang ◽  
Ilyas Sahin ◽  
...  

Abstract Background Extramedullary disease (EMD) in patients with multiple myeloma occurs mostly in advanced disease or relapse. EMD seems to have a different pathogenesis from medullary myeloma and is often characterized by a more aggressive clinical course. To date molecular mechanisms of development of EMD have not been fully understood. Methods: Human MM cell lines, IM-9 and MM1S were serially selected in immune-deficient mice. IM-9 and MM1S cells were inoculated intravenously and harvested from the tumors developed in the bone marrow (BM) and liver (site of extramedullary disease), aiming to establish BM-prone and liver-prone clones. Tumor progression was periodically checked by bioluminescence (BLI) and in vivo live confocal imaging. After three rounds of in vivo selections, the cells of both BM- and liver-prone were characterized by gene and protein expression and cellular functional assays. Results: We obtained three liver-prone sub-clones in both IM-9 and MM1S after serial in vivo selections. These cells had equal proliferation rates in vitro compared to the original or BM-prone cells, but exhibited more aggressive phenotype in vivo. Liver-prone clones had significantly higher migration ability than BM-prone clones (11.6% vs 6.1% migration, respectively p=0.018). Gene and protein expression analysis revealed that each liver-prone clone had a higher expression of sets of chemokine receptors specifically CXCR4. Using thein vivo metastatic model CXCR4-over expressing myeloma cells exhibited higher metastatic property to the extramedullary organs whereas CXCR4-knockdown cells has less tumor metastasis to the liver. Discussion: We established EMD-prone human multiple myeloma cell lines that reproducibly developed liverinvolvement consistent with human extramedullary disease. These cells exhibited higher migratory ability and increased expression of several chemokine receptors, specifically CXCR4. We validated the effect of CXCR4 on developing extramedullary myeloma using our established in vivo mode. Further studies to determine the role of CXCR4 for therapeutic targeting of extramedullary disease in MM are ongoing. Disclosures: Ghobrial: Sanofi: Research Funding; Noxxon: Research Funding; BMS: Advisory board, Advisory board Other, Research Funding; Onyx: Advisoryboard Other.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4920-4920
Author(s):  
Michael Sebag ◽  
Xian-Fang Huang ◽  
Nicolas Garnier ◽  
Wilson H. Miller ◽  
Koren Mann

Abstract Abstract 4920 Arsenic trioxide (ATO) induces apoptosis and promotes differentiation of acute promyelocytic leukemia (APL) cells, but has less activity in other types of cancers. One factor that may impede ATO success outside of APL is its toxicity profile, which limits in vivo concentrations and therefore, therapeutic benefit. We have reported that trolox, an analogue of alpha tocopherol, can augment ATO sensitivity in a variety of malignant cells, while protecting non-malignant cells from ATO toxicity. In this current study, we have focused on Multiple Myeloma (MM), a plasma cell malignancy that often shows resistance to apoptosis, drug inhibition and remains incurable despite tremendous recent advances. Although ATO has activity against MM cells in vitro, clinical trials of ATO, given as a solo agent, in MM have shown limited promise. To see if the addition of trolox could augment ATO toxicity, a panel of human myeloma cell lines (HMCLs, n=9) representing the genetic diversity seen in this disease, were treated with increasing concentration of ATO with and without 100uM trolox. Cell growth was assessed by MTT viability assays and virtually all cell lines were sensitive to varying doses of ATO. Four cell lines (U266, KMS11, MM1R, MM1S) showed profound inhibition of cell growth with very low concentrations of ATO (<1uM). Trolox (100uM) alone had no effect on cell growth, but in concert with ATO further decreased cell growth by up to 50% as compared to the same dose of ATO alone in virtually all cell lines. To further elucidate the mechanism of growth inhibition, annexin V assays were performed by flow cytometry to measure apoptosis. In all cell lines (n=9), a clear increase in the apoptotic fraction was noted when trolox was added to varying doses of arsenic. To test whether oxidative stress plays a role in ATO-mediated apoptosis of myeloma cells, we looked at the induction of a stress response protein (HO-1), a marker of oxidative stress induced by ATO. Western blot analysis revealed that in all myeloma cells tested, HO-1 was dramatically and quickly induced by ATO and further induced by the addition of trolox, indicating a pro-oxidant activity of trolox in the malignant cells. While the mechanism of trolox enhancement of ATO function remains largely unknown, intracellular concentrations of ATO in MM cells, as measured by inductively coupled plasma mass spectrometry, suggest that trolox does not work by augmenting ATO import or intracellular accumulation. To test the efficacy of ATO with trolox in vivo, we used a novel transgenic mouse model of MM that has been shown to faithfully mimic the human disease and its response to treatment (Chesi et al, Cancer Cell 2008 Feb;13(2):167-80). We first treated MM afflicted mice with a low dose of ATO (5.0mg/kg) and Trolox (50mg/kg) to assess for toxicity and tolerability. This dose was well tolerated in all mice when given for 10 days with no obvious toxic effects. Serum protein electrophoresis performed at the end of the 10 day treatment period revealed that even at this low starting dose, one of three mice showed a 30% reduction in its paraprotein peak, while the others remained stable. Further studies with higher ATO concentrations in the same mouse model are underway. In conclusion, these data support the role of ATO plus Trolox, as a promising anti-myeloma therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1749-1757 ◽  
Author(s):  
Steven P. Treon ◽  
Gerrard Teoh ◽  
Mitsuyoshi Urashima ◽  
Atsushi Ogata ◽  
Dharminder Chauhan ◽  
...  

Abstract Previous studies have suggested that multiple myeloma (MM) cells express estrogen receptors (ER). In the present study, we characterized the effects of estrogen agonists and antagonists (anti-estrogens [AE]) on growth of MM cell lines and MM patient cells. In addition to antagonizing estrogen binding to ER, AE can trigger apoptosis. Hence, we also determined whether estrogens or AE altered MM cell survival. Immunoblotting showed that ER- is expressed in 4 of 5 MM cell lines (ARH-77, RPMI 8226, S6B45, and U266, but not OCI-My-5 cells), as well as in freshly isolated MM cells from 3 of 3 patients. 17β-estradiol (E2) did not significantly alter proliferation of MM cell lines or MM patient cells. In contrast, two structurally distinct AE, tamoxifen (TAM) and ICI 182,780 (ICI), significantly inhibited the proliferation of all 5 MM cell lines and MM cells from 2 of 2 patients (IC50, 2 to 4 μmol/L). Proliferation of these cell lines was also inhibited by the hydroxylated TAM derivative, 4-hydroxytamoxifen (4HTAM), although this derivative was less potent than TAM (IC50, 3 to 25 μmol/L). In contrast, the dehalogenated TAM derivative toremifene (TOR) did not inhibit MM cell proliferation. We next examined the effects of these agents on MM cell survival. TAM, ICI, and, to a lesser extent, 4HTAM and TOR triggered apoptosis in both ER-–positive as well as ER-–negative MM cell lines and patient MM cells, evidenced both by fluorescence-activated cell sorting (FACS) analysis using propidium iodide staining and the TUNEL assay. TAM-induced growth inhibition and apoptosis of ER-–positive S6B45 MM cells was not blocked by coculture with excess E2. TAM-induced apoptosis of S6B45 MM cells was also unaffected by addition of exogenous interleukin-6. Importantly, both the inhibition of MM cell proliferation and the induction of MM cell apoptosis were achieved at concentrations of TAM (0.5 and 5.0 μmol/L) that did not significantly alter in vitro growth of normal hematopoietic progenitor cells. Similar plasma levels of TAM have been achieved using high-dose oral TAM therapy, with an acceptable toxicity profile. These studies therefore provide the rationale for trials to define the utility of AE therapy in MM. © 1998 by The American Society of Hematology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 765-765 ◽  
Author(s):  
Keisuke Ito ◽  
Tomonori Nakazato ◽  
Yoshitaka Miyakawa ◽  
Ming Ji Xian ◽  
Taketo Yamada ◽  
...  

Abstract 1′-acetoxychavicol acetate (ACA) is a component of traditional Asian condiment, obtained from rhizomes of the commonly used ethno-medicinal plant Languas galanga (Zingiberacetate). Recent extensive studies revealed that ACA has potent chemopreventive effects against various tumors. More recently, we have reported that ACA induces apoptosis of myeloid leukemic cells via mitochondrial- and Fas-mediated dual pathway. The transcription factor NF-κB confers significant survival potential in myeloma cells; therefore, it has emerged as a therapeutic target for the treatment of multiple myeloma. Multiple myeloma is an incurable hematological disorders, which has been fatal outcome despite of high dose chemotherapy with stem cell transplantation; therefore, a novel biologically based therapeutic approach is desired. In this study, we investigated the effects of ACA on myeloma cells in vitro and in vivo, and further examined the molecular mechanisms of ACA-induced apoptosis in myeloma cells. ACA dramatically inhibited cellular growth of various human myeloma cell lines (RPMI8226, U266, IM9, and HS-Sultan) as well as freshly isolated myeloma cells from patients, but not normal bone marrow cells, in a dose (0-20 μM)- and time (0-24 h)-dependent manner. Cultivation with 10 μM ACA rapidly increased the population of cells in the G0/G1 phase with a reduction of cells in the S phase, and a strong induction of apoptosis was shown by the appearance of a hypodiploid DNA peak with sub-G1 DNA content 3 h after treatment. Treatment with ACA induced both caspase-3, -9, and caspase-8 activities, suggesting that ACA-induced apoptosis in myeloma cells mediates both mitochondrial- and Fas-dependent pathways. Furthermore, we investigated the effects of ACA on NF-κB activity in myeloma cells, and were able to demonstrate that ACA significantly inhibited serine phosphorylation and degradation of IκBα in a time-dependent manner. ACA rapidly decreased the nuclear expression of NF-κB, but increased the accumulation of cytosol NF-κB in RPMI8226 cells, indicating that ACA inhibits translocation of NF-κB from the cytosol to the nucleus. In addition, we also confirmed the inhibitory effects of ACA on NF-κB activation by ELISA in myeloma cell lines and fresh samples. ACA had a synergistic proapoptotic effect with another NF-κB inhibitor, MG-132 and TLCK. In contrast, NF-κB activator, PMA, dramatically abrogated ACA-induced apoptosis in myeloma cells. These in vitro studies prompted us to examine whether the effects of ACA are equally valid in vivo. To evaluate the effects of ACA in vivo, RPMI8226-transplanted NOD/SCID mice were treated with ACA. Tumor weight decreased in the mice that were injected ACA (mean weight: 0.04±0.06 g in the ACA-treated group vs. 0.63±0.29 g in the control group; p<0.01). During the treatment, ACA-treated mice appeared healthy, and pathological analysis at autopsy revealed no ACA-induced tissue changes in any of the organ, indicating that ACA might be developed as a new potent anti-cancer agent for the management of multiple myeloma. In conclusion, ACA has an inhibitory activity of NF-κB, and induces apoptosis of myeloma cells in vitro and in vivo. Therefore, ACA provides the new biologically based therapy for the treatment of multiple myeloma patients as a novel NF-κB inhibitor.


Sign in / Sign up

Export Citation Format

Share Document