scholarly journals Expression of MDR1 gene in acute leukemia cells: association with CD7+ acute myeloblastic leukemia/acute lymphoblastic leukemia

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3445-3451 ◽  
Author(s):  
H Miwa ◽  
K Kita ◽  
K Nishii ◽  
N Morita ◽  
N Takakura ◽  
...  

Abstract MDR1 gene expression was examined in acute leukemia cells from 75 Japanese patients at diagnosis (50 with acute myeloblastic leukemia [AML]: 10 M1, 18 M2, 5 M3, 8 M4, 9 M5; 25 with acute lymphoblastic leukemia [ALL]: 13 B-precursor, 12 T-lineage). The results of MDR1 mRNA expression by reverse transcriptase polymerase chain reaction were confirmed by immunostaining using the anti-P-glycoprotein monoclonal antibody UIC2 and by a functional study using the rhodamine efflux test. Morphologically, AML M1 cases had the highest incidence of MDR1 gene expression (6 of 10 patients). Phenotypically, CD7 and CD34 were the only surface markers that were significantly associated with MDR1 gene expression (P < .01). In CD7+CD4-CD8- ALL, which is thought to originate from the lymphohematopoietic stem cell, expressed the MDR1 gene with a high incidence (six of eight patients), whereas three surface CD3+ and one CD4+CD8+ T-cell ALL (T-ALL) did not have detectable MDR1 transcripts. Only two cases of 13 B-precursor ALL had MDR1 mRNA, one of which had the Philadelphia (Ph1) chromosome. No association was observed between MDR1 gene expression and CD34 positivity in ALL. Our results that MDR1 mRNA was frequently expressed in CD7+ AML and CD7+CD4-CD8- ALL, together with the previous reports indicating clinical similarities between these leukemias, provides a clue to clarify a relationship between CD7+ AML and CD7+CD4-CD8- ALL. In addition, MDR1 expression in CD7+ AML/ALL might be responsible for the poor response to conventional chemotherapies of these types of leukemia.

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3445-3451
Author(s):  
H Miwa ◽  
K Kita ◽  
K Nishii ◽  
N Morita ◽  
N Takakura ◽  
...  

MDR1 gene expression was examined in acute leukemia cells from 75 Japanese patients at diagnosis (50 with acute myeloblastic leukemia [AML]: 10 M1, 18 M2, 5 M3, 8 M4, 9 M5; 25 with acute lymphoblastic leukemia [ALL]: 13 B-precursor, 12 T-lineage). The results of MDR1 mRNA expression by reverse transcriptase polymerase chain reaction were confirmed by immunostaining using the anti-P-glycoprotein monoclonal antibody UIC2 and by a functional study using the rhodamine efflux test. Morphologically, AML M1 cases had the highest incidence of MDR1 gene expression (6 of 10 patients). Phenotypically, CD7 and CD34 were the only surface markers that were significantly associated with MDR1 gene expression (P < .01). In CD7+CD4-CD8- ALL, which is thought to originate from the lymphohematopoietic stem cell, expressed the MDR1 gene with a high incidence (six of eight patients), whereas three surface CD3+ and one CD4+CD8+ T-cell ALL (T-ALL) did not have detectable MDR1 transcripts. Only two cases of 13 B-precursor ALL had MDR1 mRNA, one of which had the Philadelphia (Ph1) chromosome. No association was observed between MDR1 gene expression and CD34 positivity in ALL. Our results that MDR1 mRNA was frequently expressed in CD7+ AML and CD7+CD4-CD8- ALL, together with the previous reports indicating clinical similarities between these leukemias, provides a clue to clarify a relationship between CD7+ AML and CD7+CD4-CD8- ALL. In addition, MDR1 expression in CD7+ AML/ALL might be responsible for the poor response to conventional chemotherapies of these types of leukemia.


2010 ◽  
Vol 59 (11) ◽  
pp. 1633-1644 ◽  
Author(s):  
Jessica C. Shand ◽  
Johan Jansson ◽  
Yu-Chiao Hsu ◽  
Andrew Campbell ◽  
Craig A. Mullen

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 452-452
Author(s):  
Leo Kager ◽  
Meyling H. Cheok ◽  
Wenjian Yang ◽  
Gianluigi Zaza ◽  
Ching-Hon Pui ◽  
...  

Abstract Methotrexate (MTX) is an essential treatment component for acute lymphoblastic leukemia (ALL). The ability of leukemia cells to accumulate MTX in its polyglutamylated form (MTXPG) is recognized as an important determinant of its antileukemic effect. We measured in vivo MTXPG accumulation in leukemia cells from 101 children with ALL, and established that blasts of B-lineage ALL with either the TEL-AML1 (n=24 patients, median 911, range 338 to 5906 pmol/109 blasts) or E2A-PBX1 gene fusion (n=5, median 553, range 364 to 800 pmol/109 blasts) or T-lineage ALL (n=14, median 572, range 284 to 1468 pmol/109 blasts) accumulate significantly lower MTXPG, compared to those of other B-lineage ALL (BNHD, n=39, median 2210, range 186 to 9722 pmol/109 blasts) or hyperdiploid ALL (BHD, n=19, median 4375, range 377 to 9206 pmol/109 blasts) (E2A-PBX1 versus BHD, p=0.008; E2A-PBX1 vs. BNHD, p=0.010; TEL-AML1 vs. BHD, p&lt;0.001; TEL-AML1 vs. BNHD, p=0.004; T-ALL vs. BHD and BNHD, p&lt;0.001; p-values are from pair-wise comparisons using Wilcoxon rank sum test, adjusted for multiple testing using Holm’s method). To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays (Affymetrix® HG-U133A) to analyze expression of 32 folate pathway genes (53 probe sets) in diagnostic bone marrow blasts from 197 children with ALL. This revealed ALL subtype-specific patterns of folate metabolism gene expression and identified differences in gene expression that discriminated the MTXPG accumulation phenotype in ALL cells. We found significantly lower expression of the reduced folate carrier (SLC19A1, MTX uptake transporter) in E2A-PBX1 ALL; significantly higher expression of breast cancer resistance protein (ABCG2, MTX efflux transporter) in TEL-AML1 ALL; and lower expression of FPGS (catalyzes formation of MTXPG) in T-ALL; consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome this potential cause of treatment failure in childhood ALL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5033-5033
Author(s):  
Arpita Kundu ◽  
Eric Kowarz ◽  
Jennifer Reis ◽  
Rolf Marschalek

Chromosomal translocations are genetic rearrangements where a chromosomal segment is transferred to a non-homologous chromosome which give rise to novel chimeras. Chromosomal rearrangements play a significant role in the development of acute leukemias (acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML)). Chromosomal translocation events occurring at 11q23 involving the KMT2A or Mixed-Lineage Leukemia (MLL) gene (n=102) can be diagnosed in about 5-10% of all acute leukemia patients (Marschalek Ann Lab Med 2016), especially prevalent in infant acute leukemias (up to 70% of cases). Different chromosomal translocation partner genes (such as AF4, AF6, AF9orENL and ELL) account for the majority of leukemia cases and have their genomic breakpoints within a major breakpoint cluster region (BCR intron 9-11; Meyer et. al. Leukemia 2018). Some rearrangements are specifically associated with particular disease phenotype e.g. the majority of ALL patients (~ 90%) are mainly caused by the following gene fusions, MLL-AF4, MLL-AF9, MLL-ENL. We are interested in a rare but yet drastic chromosomal translocation t(6;11)(q27;q23) which fuses KMT2A/MLL to Afadin (AFDN/AF6) gene. This chromosomal rearrangement has a very poor prognosis (survival-rate is ~10%) and is predominantly diagnosed in patients with high-risk AML. In this project, we investigate the molecular consequences of two different MLL-AF6 fusions and their corresponding reciprocal AF6-MLL fusions. MLL-AF6 fusions are mainly occurring within MLL intron 9 to 11 and are associated with an AML disease phenotype, while the same fusion occurring within the minor breakpoints region in MLL intron 21 until exon (ex) 24 are mainly diagnosed with T-ALL (T-cell acute lymphoblastic leukemia) disease phenotype. The molecular mechanism that determines the resulting disease phenotype is yet unknown. Therefore, we cloned all of these t(6;11) fusion proteins in order to investigate the functional consequences of the two different breakpoints (MLLex1-9::AF6ex2-30, AF6ex1::MLLex10-37; MLLex1-21::AF6ex2-30, AF6ex1::MLLex22-37). All 4 fusion genes were introduced into our inducible Sleeping Beauty system (Ivics et. al. Mobile DNA 2010; Kowarz et. al. Biotechnol J. 2015) and stably transfected reporter cell lines. Basically, these 4 fusion proteins differ only in the presence or absence of their Plant homeodomain 1-3/Bromodomain (PHD1-3/BD) domain (see Figure 1). The PHD domain regulates the epigenetic and transcriptional regulatory functions of wildtype MLL. Subsequently, we analyzed gene expression differences by the MACE-Seq (Massive Analyses of cDNA Ends). MACE data revealed fundamental differences in gene expression profiles when analyzing the two different sets of t(6;11) fusion genes. The resulting profiles have similarities to either AML or T-ALL and might give a rational explanation for the different lineages in these t(6;11) patients. Altogether, these results notably indicate that our study will provide a novel insight into this type of high-risk leukemia and subsequently will be useful for developing of novel and appropriate therapeutic strategies against acute leukemia. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 30 ◽  
pp. 04007
Author(s):  
Evgeniy Seliverstov ◽  
Marina Skorkina

The article presents the application of the method for determining the quantitative parameters of erythropoiesis to patients with acute leukemia. The objective of the work is an investigation of erythropoiesis cytokinetic parameters under the normal health conditions and during the development of the acute lymphoblastic leukemia and the acute myeloblastic leukemia. It was found that the distribution of reticulocytes shifts towards an increase of immature reticulocyte fraction while the ratio between maturing and immature cells remains unchanged. The method presented can be used in clinical diagnostic and scientific research of bone marrow hematopoietic activity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 399-399
Author(s):  
Suhu Liu ◽  
Sarah Walker ◽  
Erik Nelson ◽  
Robert Cirulli ◽  
Michael Xiang ◽  
...  

Abstract Abstract 399 Introduction: The transcription factor STAT5 is constitutively activated in many forms of hematologic malignancies, including chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL). STAT5 can be activated by constitutively activated tyrosine kinases or autocrine and paracrine secretion of cytokines signaling through Jak kinases. STAT5 is essential for the pathogenesis of neoplasms induced by BCR-ABL1 and Jak2V617F, as well as for leukemia stem cell self-renewal. Development of tyrosine kinases inhibitors (TKIs), such as imatinib, has greatly improved the outcome of patients with leukemias harboring aberrantly activated oncogenic tyrosine kinases. However, TKIs used as a single agent only achieve significant success in CML, with very limited benefit in the more aggressive ALL. Moreover, patients with CML who initially respond well may acquire resistance to TKIs with the progression of their disease. In fact, increased activity of STAT5 is often associated with CML progression and may underlie resistance to TKIs. Importantly, leukemia cells that are resistant to TKIs remain sensitive to STAT5 inhibition, and dual inhibition of both tyrosine kinases and STAT5 leads to more efficient reduction of leukemia cell viability. Thus targeting STAT5 alone or in combination is a promising therapeutic strategy for many hematological malignancies. While many strategies directly inhibit STAT5, we considered the possibility that STAT5 association with co-regulatory proteins is essential for STAT5 function and therefore targeting this association may be a suitable therapeutic strategy. Methods and Results: Given the importance of BET bromodomain proteins in chromatin remodeling necessary for transcription, we tested the activity of the BET bromodomain inhibitor JQ1 on STAT5-dependent transcriptional activity. Using both heterologous reporter systems and endogenous STAT5 target genes, we found that JQ1, but not its inactive enantiomer, potently and specifically inhibited STAT5-dependent gene expression. Inhibition of STAT5 dependent gene regulation was also replicated by another BET bromodomian inhibitor, iBET, further demonstrating that BET inhibition inhibits STAT5. Since JQ1 inhibits BET family members Brd2, Brd3, Brd4, and BrdT, we asked which BET family member is specifically associated with STAT5 transcriptional function. To do this, we utilized shRNA to knock-down each bromodomain protein and determined the effect on STAT5 activity. We found that knocking-down Brd2, but not Brd3 or Brd4, reduces STAT5 target gene expression, indicating that Brd2 is specifically involved in regulating STAT5 transcriptional function. JQ1 can reduce STAT5 transcriptional activity without inhibiting STAT5 phosphorylation or STAT5 binding to its genomic binding sites. Similarly, knocking-down Brd2 can reduce STAT5 target gene expression without influencing STAT5 phosphorylation. We hypothesize that Brd2 regulates STAT5 transcriptional function by acting as a co-activator for STAT5. Thus through blocking Brd2, JQ1 can inhibit STAT5 transcriptional function without directly targeting STAT5 itself. In a group of aggressive T cell acute lymphoblastic leukemia (T-ALL) cell lines, where constitutively activated STAT5 contributes to leukemia cell survival, knocking-down Brd2 renders leukemia cells more sensitive to TKI induced apoptosis. In addition, combined treatment with TKIs and JQ1 showed strong synergy in inducing T-ALL leukemia cells apoptosis and reducing viability. Overexpressing a constitutively active form of STAT5 rescues these leukemia cells from death induced by TKIs and JQ1, indicating an important role of STAT5 as a target for TKI and JQ1 induced cell death in T-ALL cells. Conclusion: We found that the BET bromodomain inhibitor JQ1 can reduce STAT5 transcriptional function by blocking Brd2 without reducing STAT5 phosphorylation or STAT5 DNA binding. In addition, the combination of TKIs and JQ1 induces T-ALL leukemia cell apoptosis and reduces survival in a synergistic manner, and represents a rational drug combination for treating this sub-group of highly aggressive leukemias. Disclosures: Bradner: Tensha Therapeutics: Consultancy, Equity Ownership, Scientific founder Other.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 586-592 ◽  
Author(s):  
JP Marie ◽  
R Zittoun ◽  
BI Sikic

Resistance to multiple chemotherapeutic agents has been related to the production of P-glycoprotein, a trans-membrane drug efflux pump that is encoded by the multidrug resistance (MDR) gene mdr1. To investigate whether mdr1 could be involved in clinical resistance to chemotherapy in acute leukemias, we have analyzed retrospectively the RNA from adult acute leukemia cells by slot-blot hybridization with a human mdr1 probe. Units of mdr1 expression were defined by reference to drug- sensitive human sarcoma and K562 leukemia cell lines (1 U) and the highly resistant doxorubicin selected leukemia cells K562/R7 (50 U). We studied 41 adult patients with acute leukemias: 5 acute lymphoblastic leukemias, 23 acute myeloid leukemias, and 13 secondary leukemias or blast crisis of chronic myelogenous leukemia. Expression of 10 U or more of mdr1 was found in 6 of 31 (19%) leukemias at diagnosis, versus 5 of 10 (50%) after relapse from therapy, P = .06. The complete remission rate and in vitro sensitivity to daunorubicin were both correlated with low expression (1 U, v 2 U or more) of mdr1. Among 36 evaluable attempts to induce remission, the complete remission rate was 67% (8 of 12) for patients with undetectable or minimal mdr1 expression (1 U), versus 29% (7 of 24) in patients with 2 U or more of expression, P = .03. In vitro resistance to daunorubicin or other MDR-related drugs was associated with expression of 2 U or more of mdr1 in 11 of 11 cases, while specimens that were sensitive to these agents were negative for mdr1 expression in 5 of 11 cases, P = .03. These data suggest that mdr1 expression contributes to chemoresistance in acute leukemia. Determination of mdr1 gene expression may be useful in designing therapy for patients with leukemia.


Sign in / Sign up

Export Citation Format

Share Document