Targeting STAT5 in Leukemia Through Inhibition of Bromodomain Proteins

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 399-399
Author(s):  
Suhu Liu ◽  
Sarah Walker ◽  
Erik Nelson ◽  
Robert Cirulli ◽  
Michael Xiang ◽  
...  

Abstract Abstract 399 Introduction: The transcription factor STAT5 is constitutively activated in many forms of hematologic malignancies, including chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL). STAT5 can be activated by constitutively activated tyrosine kinases or autocrine and paracrine secretion of cytokines signaling through Jak kinases. STAT5 is essential for the pathogenesis of neoplasms induced by BCR-ABL1 and Jak2V617F, as well as for leukemia stem cell self-renewal. Development of tyrosine kinases inhibitors (TKIs), such as imatinib, has greatly improved the outcome of patients with leukemias harboring aberrantly activated oncogenic tyrosine kinases. However, TKIs used as a single agent only achieve significant success in CML, with very limited benefit in the more aggressive ALL. Moreover, patients with CML who initially respond well may acquire resistance to TKIs with the progression of their disease. In fact, increased activity of STAT5 is often associated with CML progression and may underlie resistance to TKIs. Importantly, leukemia cells that are resistant to TKIs remain sensitive to STAT5 inhibition, and dual inhibition of both tyrosine kinases and STAT5 leads to more efficient reduction of leukemia cell viability. Thus targeting STAT5 alone or in combination is a promising therapeutic strategy for many hematological malignancies. While many strategies directly inhibit STAT5, we considered the possibility that STAT5 association with co-regulatory proteins is essential for STAT5 function and therefore targeting this association may be a suitable therapeutic strategy. Methods and Results: Given the importance of BET bromodomain proteins in chromatin remodeling necessary for transcription, we tested the activity of the BET bromodomain inhibitor JQ1 on STAT5-dependent transcriptional activity. Using both heterologous reporter systems and endogenous STAT5 target genes, we found that JQ1, but not its inactive enantiomer, potently and specifically inhibited STAT5-dependent gene expression. Inhibition of STAT5 dependent gene regulation was also replicated by another BET bromodomian inhibitor, iBET, further demonstrating that BET inhibition inhibits STAT5. Since JQ1 inhibits BET family members Brd2, Brd3, Brd4, and BrdT, we asked which BET family member is specifically associated with STAT5 transcriptional function. To do this, we utilized shRNA to knock-down each bromodomain protein and determined the effect on STAT5 activity. We found that knocking-down Brd2, but not Brd3 or Brd4, reduces STAT5 target gene expression, indicating that Brd2 is specifically involved in regulating STAT5 transcriptional function. JQ1 can reduce STAT5 transcriptional activity without inhibiting STAT5 phosphorylation or STAT5 binding to its genomic binding sites. Similarly, knocking-down Brd2 can reduce STAT5 target gene expression without influencing STAT5 phosphorylation. We hypothesize that Brd2 regulates STAT5 transcriptional function by acting as a co-activator for STAT5. Thus through blocking Brd2, JQ1 can inhibit STAT5 transcriptional function without directly targeting STAT5 itself. In a group of aggressive T cell acute lymphoblastic leukemia (T-ALL) cell lines, where constitutively activated STAT5 contributes to leukemia cell survival, knocking-down Brd2 renders leukemia cells more sensitive to TKI induced apoptosis. In addition, combined treatment with TKIs and JQ1 showed strong synergy in inducing T-ALL leukemia cells apoptosis and reducing viability. Overexpressing a constitutively active form of STAT5 rescues these leukemia cells from death induced by TKIs and JQ1, indicating an important role of STAT5 as a target for TKI and JQ1 induced cell death in T-ALL cells. Conclusion: We found that the BET bromodomain inhibitor JQ1 can reduce STAT5 transcriptional function by blocking Brd2 without reducing STAT5 phosphorylation or STAT5 DNA binding. In addition, the combination of TKIs and JQ1 induces T-ALL leukemia cell apoptosis and reduces survival in a synergistic manner, and represents a rational drug combination for treating this sub-group of highly aggressive leukemias. Disclosures: Bradner: Tensha Therapeutics: Consultancy, Equity Ownership, Scientific founder Other.

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1470
Author(s):  
Hsiao-Chuan Liu ◽  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yongsheng Ruan ◽  
Heather Ogana ◽  
...  

Drug resistance is an obstacle in the therapy of acute lymphoblastic leukemia (ALL). Whether the physical properties such as the motility of the cells contribute to the survival of ALL cells after drug treatment has recently been of increasing interest, as they could potentially allow the metastasis of solid tumor cells and the migration of leukemia cells. We hypothesized that chemotherapeutic treatment may alter these physical cellular properties. To investigate the motility of chemotherapeutics-treated B-cell ALL (B-ALL) cells, patient-derived B-ALL cells were treated with chemotherapy for 7 days and left for 12 h without chemotherapeutic treatment. Two parameters of motility were studied, velocity and migration distance, using a time-lapse imaging system. The study revealed that compared to non-chemotherapeutically treated B-ALL cells, B-ALL cells that survived chemotherapy treatment after 7 days showed reduced motility. We had previously shown that Tysabri and P5G10, antibodies against the adhesion molecules integrins α4 and α6, respectively, may overcome drug resistance mediated through leukemia cell adhesion to bone marrow stromal cells. Therefore, we tested the effect of integrin α4 or α6 blockade on the motility of chemotherapeutics-treated ALL cells. Only integrin α4 blockade decreased the motility and velocity of two chemotherapeutics-treated ALL cell lines. Interestingly, integrin α6 blockade did not affect the velocity of chemoresistant ALL cells. This study explores the physical properties of the movements of chemoresistant B-ALL cells and highlights a potential link to integrins. Further studies to investigate the underlying mechanism are warranted.


2010 ◽  
Vol 59 (11) ◽  
pp. 1633-1644 ◽  
Author(s):  
Jessica C. Shand ◽  
Johan Jansson ◽  
Yu-Chiao Hsu ◽  
Andrew Campbell ◽  
Craig A. Mullen

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 452-452
Author(s):  
Leo Kager ◽  
Meyling H. Cheok ◽  
Wenjian Yang ◽  
Gianluigi Zaza ◽  
Ching-Hon Pui ◽  
...  

Abstract Methotrexate (MTX) is an essential treatment component for acute lymphoblastic leukemia (ALL). The ability of leukemia cells to accumulate MTX in its polyglutamylated form (MTXPG) is recognized as an important determinant of its antileukemic effect. We measured in vivo MTXPG accumulation in leukemia cells from 101 children with ALL, and established that blasts of B-lineage ALL with either the TEL-AML1 (n=24 patients, median 911, range 338 to 5906 pmol/109 blasts) or E2A-PBX1 gene fusion (n=5, median 553, range 364 to 800 pmol/109 blasts) or T-lineage ALL (n=14, median 572, range 284 to 1468 pmol/109 blasts) accumulate significantly lower MTXPG, compared to those of other B-lineage ALL (BNHD, n=39, median 2210, range 186 to 9722 pmol/109 blasts) or hyperdiploid ALL (BHD, n=19, median 4375, range 377 to 9206 pmol/109 blasts) (E2A-PBX1 versus BHD, p=0.008; E2A-PBX1 vs. BNHD, p=0.010; TEL-AML1 vs. BHD, p<0.001; TEL-AML1 vs. BNHD, p=0.004; T-ALL vs. BHD and BNHD, p<0.001; p-values are from pair-wise comparisons using Wilcoxon rank sum test, adjusted for multiple testing using Holm’s method). To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays (Affymetrix® HG-U133A) to analyze expression of 32 folate pathway genes (53 probe sets) in diagnostic bone marrow blasts from 197 children with ALL. This revealed ALL subtype-specific patterns of folate metabolism gene expression and identified differences in gene expression that discriminated the MTXPG accumulation phenotype in ALL cells. We found significantly lower expression of the reduced folate carrier (SLC19A1, MTX uptake transporter) in E2A-PBX1 ALL; significantly higher expression of breast cancer resistance protein (ABCG2, MTX efflux transporter) in TEL-AML1 ALL; and lower expression of FPGS (catalyzes formation of MTXPG) in T-ALL; consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome this potential cause of treatment failure in childhood ALL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4110-4110
Author(s):  
Yuping Gong ◽  
Xi Yang ◽  
Ting Niu

Abstract Abstract 4110 Objective To study the proliferative inhibition of imatinib, daunorubicin and bortezomib in two kinds of Ph(+) leukemia cell lines: chronic myelogenous leukemia cell line K562 expressing P210 protein and acute lymphoblastic leukemia cell line SUP-B15 expressing P190 protein. Methods (1) Cell proliferation with imatinib, daunorubicin and bortezomib for 72 hours was analyzed by the MTT assay and displayed by growth curve and IC50 value. (2) The change of bcr-abl gene mRNA levels after the 48 hours' intervention of imatinib (final concentration at 0μM, 0.35μM, 1 μM) was detected by reverse transcription polymerase chain reaction (RT-PCR). Results (1) The IC50 values of K562 and SUP-B15 cells inhibited by imatinib, daunorubicin and bortezomib for 72 hours was respectively 0.286±0.06 (μmol/L), 0.303±0.009 (μmol/L), 22.127±3.592 (nmol/L) and 1.387±0.180(μmol/L), 0.117±0.017 (μmol/L), 12.350±0.740 (nmol/L), which indicated that the K562 cell line was the more sensitive to imatinib than SUP-B15 cell line, whereas the SUP-B15 cell line had the more sensitivity to daunorubicin and bortezomib. (2) There was no change of bcr-abl gene expression after the 48 hours' intervention of imatinib in both cell lines. Conclusion (1) Imatinib, daunorubicin and bortezomib had good anti-cancer effect to Ph+ leukemia cells in vitro. What's more, the K562 cell was the more sensitive to imatinib and only imatinib will have good effect on chronic myelogenous leukemia. Whereas the SUP-B15 cell had the more sensitivity to daunorubicin and bortezomib and combining imatinib with daunorubicin or bortezomib, the effect will be better on Ph(+) acute lymphoblastic leukemia. (2) The short time intervention of imatinib had no effect on the bcr-abl gene expression and imatinib could need long time to show curative effect for the Ph+ leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3537-3545 ◽  
Author(s):  
Leo Mascarenhas ◽  
Renata Stripecke ◽  
Scott S. Case ◽  
Dakun Xu ◽  
Kenneth I. Weinberg ◽  
...  

Autologous leukemia cells engineered to express immune-stimulating molecules may be used to elicit antileukemia immune responses. Gene delivery to human B-precursor acute lymphoblastic leukemia (ALL) cells was investigated using the enhanced green fluorescent protein (EGFP) as a reporter gene, measured by flow cytometry. Transfection of the Nalm-6 and Reh B-precursor ALL leukemia cell lines with an expression plasmid was investigated using lipofection, electroporation, and a polycationic compound. Only the liposomal compound Cellfectin showed significant gene transfer (3.9% to 12% for Nalm-6 cells and 3.1% to 5% for Reh cells). Transduction with gibbon-ape leukemia virus pseudotyped Moloney murine leukemia virus (MoMuLV)-based retrovirus vectors was investigated in various settings. Cocultivation of ALL cell lines with packaging cell lines showed the highest transduction efficiency for retroviral gene transfer (40.1% to 87.5% for Nalm-6 cells and 0.3% to 9% for Reh cells), followed by transduction with viral supernatant on the recombinant fibronectin fragment CH-296 (13% to 35.5% for Nalm-6 cells and 0.4% to 6% Reh cells), transduction on human bone marrow stroma monolayers (3.2% to 13.3% for Nalm-6 cells and 0% to 0.2% Reh cells), and in suspension with protamine sulfate (0.7% to 3.1% for Nalm-6 cells and 0% for Reh cells). Transduction of both Nalm-6 and Reh cells with human immunodeficiency virus–type 1 (HIV-1)–based lentiviral vectors pseudotyped with the vesicular stomatitis virus-G envelope produced the best gene transfer efficiency, transducing greater than 90% of both cell lines. Gene delivery into primary human B-precursor ALL cells from patients was then investigated using MoMuLV-based retrovirus vectors and HIV-1–based lentivirus vectors. Both vectors transduced the primary B-precursor ALL cells with high efficiencies. These studies may be applied for investigating gene delivery into primary human B-precursor ALL cells to be used for immunotherapy.


Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 485-488 ◽  
Author(s):  
Mignon L. Loh ◽  
Jinghui Zhang ◽  
Richard C. Harvey ◽  
Kathryn Roberts ◽  
Debbie Payne-Turner ◽  
...  

Abstract One recently identified subtype of pediatric B-precursor acute lymphoblastic leukemia (ALL) has been termed BCR-ABL1–like or Ph-like because of similarity of the gene expression profile to BCR-ABL1 positive ALL suggesting the presence of lesions activating tyrosine kinases, frequent alteration of IKZF1, and poor outcome. Prior studies demonstrated that approximately half of these patients had genomic lesions leading to CRLF2 overexpression, with half of such cases harboring somatic mutations in the Janus kinases JAK1 and JAK2. To determine whether mutations in other tyrosine kinases might also occur in ALL, we sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with either a Ph-like gene expression profile or other alterations suggestive of activated kinase signaling. Aside from JAK mutations and 1 FLT3 mutation, no somatic mutations were found in any other tyrosine kinases, suggesting that alternative mechanisms are responsible for activated kinase signaling in high-risk ALL.


2004 ◽  
Vol 351 (6) ◽  
pp. 533-542 ◽  
Author(s):  
Amy Holleman ◽  
Meyling H. Cheok ◽  
Monique L. den Boer ◽  
Wenjian Yang ◽  
Anjo J.P. Veerman ◽  
...  

2021 ◽  
Vol 41 (6) ◽  
pp. 2781-2793
Author(s):  
DOMINIC SCHENONE ◽  
JEFFREY R. ANDOLINA ◽  
BROOKS RADEMACHER ◽  
THOMAS J. FOUNTAINE ◽  
ELENA EDWARDS ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 903-903
Author(s):  
Salih Demir ◽  
Galina Selivanova ◽  
Eugen Tausch ◽  
Lisa Wiesmüller ◽  
Stephan Stilgenbauer ◽  
...  

Abstract Mutations of the tumor suppressor gene TP53 have been described to be associated with aggressive disease and inferior prognosis in different types of cancer, including hematological malignancies. In acute lymphoblastic leukemia (ALL), TP53 alterations are infrequently found at diagnosis but have recently been described in about 12% of patients at relapse. This suggests an association with therapy resistance in high risk/relapsed ALL and patients with TP53 mutated ALL have in fact an inferior outcome. Small molecule compounds targeting mutated TP53 such as APR-246, initially described as PRIMA-1MET (p53-dependent reactivation and induction of massive apoptosis) leading to apoptosis induction have shown activity in several types of malignancies with mutated TP53. In ALL, however, mutant TP53 has so far not been addressed as a target for therapeutic intervention. In this study, we investigated a large cohort of patient-derived pediatric B cell precursor (BCP)-ALL primograft samples to identify cases with mutated TP53. Further, we analyzed the effects of APR-246 and evaluated its activity on BCP-ALL cell lines and primografts with mutated (mut) orwild type (wt) TP53. Altogether, 62 BCP-ALL primograft samples established from patients at diagnosis (n=53) or relapse (n=9) by transplantation of primary ALL cells onto NOD/SCID mice were screened for TP53 mutations by denaturating high-performance liquid chromatography (dHPLC) followed by Sanger sequencing of exons 4 to 10 to confirm detected mutations. We identified 4 cases with TP53 mut, 3 obtained from diagnosis (5.6%) and one at relapse (11.1%), corresponding to frequencies described in clinical studies. Mutated cases were further analyzed by fluorescence in situ hybridization (FISH), revealing a 17p deletion in one TP53 mut sample. Similarly, we analyzed 6 BCP-ALL cell lines and identified 2 TP53 mut and 4 TP53 wt lines. Exposure of BCP-ALL primograft (TP53 mut n=4, TP53 wt n=4) and cell line (TP53 mut n=2, TP53 wt n=4) samples to the DNA damaging agent doxorubicin showed, as expected, resistance of TP53 mut leukemia cells for cell death induction, reflected by significantly higher half maximal inhibitory concentrations (IC50; TP53 mut 49 and 143 ng/ml, TP53 wt mean 12 ng/ml) and lower induction of cell death (TP53 mut 16 to 23%, TP53 wt 10 to 60%) in TP53 mut ALL, corroborating the tumor-suppressive function of p53 in ALL. We then investigated the sensitivity of BCP-ALL cell lines for cell death induction by APR-246 (kindly provided by Aprea, Stockholm, Sweden). We observed high sensitivity for APR-246 in TP53 mut (IC50: 5 µM for both cell lines) as compared to TP53 wt ALL (mean IC50: 58 µM). DNA fragmentation and Annexin-V/propidium-iodide (PI) positivity revealed apoptosis as mechanism of APR-246 mediated cell death. Reactive oxygen species (ROS) have recently been described to mediate APR-246 induced cell death in multiple myeloma cells. Therefore, we investigated ROS levels by detection of oxidation-specific fluorescence of dichlorodihydrofluorescein diacetate (DCFDA) in ALL cells. Interestingly, ROS quenching by N-acetyl cysteine abolished induction of cell death in TP53 mut but not TP53 wt ALL cells indicating ROS as a mediator of APR-246 induced cell death in TP53 mut ALL. Furthermore, we addressed p53 activation in response to APR-246 by assessing phosphorylation of p53 (p53pSer15) using phosphoflow cytometry. Most interestingly, APR-246 led to 6-fold increased p53pSer15 levels in TP53 mut compared to no activation in TP53 wt leukemia cells, indicating restoration of p53function upon APR-246treatment in BCP-ALL. Based on these findings, we addressed the effectivity of APR-246on primary, patient-derived primografts and compared sensitivities for cell death induction in TP53 mut (n=4) and TP53 wt (n=4) samples. Importantly, the pattern of responsiveness of TP53 mut ALL was also identified in TP53 mut patient-derived ALL samples with induction of significantly higher cell death rates in TP53 mut ALL (TP53 mut 48%, TP53 wt 18%, 5 µM APR-246, 24 h). Taken together, we showed that TP53 mut BCP-ALL can be targeted by APR-246 leading to re-activation of p53, induction of ROS dependent apoptosis and effective leukemia cell killing. Thus, targeting and re-activation of mutated p53 provides a promising novel strategy for therapeutic intervention in this high-risk subtype of BCP-ALL. Disclosures Selivanova: Aprea: Patents & Royalties: APR-246. Tausch:Gilead: Other: Travel support. Stilgenbauer:Gilead: Honoraria, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 453-453
Author(s):  
Gianluigi Zaza ◽  
Meyling Cheok ◽  
Wenjian Yang ◽  
Pei Deqing ◽  
Cheng Cheng ◽  
...  

Abstract Thioguanine nucleotides (TGN) are considered the principal active metabolites exerting the antileukemic effects of mercaptopurine (MP). Numerous clinical studies have reported substantial inter-patient variability in intracellular TGN concentrations during continuation therapy of acute lymphoblastic leukemia (ALL). To identify genes whose expression is related to the intracellular accumulation of TGN in leukemia cells after in vivo treatment with MP alone (MP) or in combination with MTX (MP+MTX), we used oligonucleotide microarrays (Affymetrixâ HG-U95Av2) to analyze the expression of approximately 9,670 genes in bone marrow leukemic blasts obtained at diagnosis from 82 children with ALL. TGN levels were determined in bone marrow aspirates of these patients 20 hours after mercaptopurine infusion (1 g/m2 I.V). Because, as previously reported, patients treated with MP alone achieved higher levels of intracellular TGN compared to those treated with the combination, we used Spearman’s rank correlation to identify genes associated with TGN levels separately for the 33 patients treated with MP alone and the 49 with the combination (MP: median TGN: 2.46 pmol/5x106 cells, range: 0.01–19.98; and MTX+MP: median TGN: 0.55 pmol/5x106 cells, range: 0.005–3.31). Hierarchical clustering using these selected probe sets clearly separated the 33 patients treated with MP alone into two major groups according to TGN concentration (< 2.46 and > 2.46 pmol/5x106 cells; n=60 genes) and two major branches were also found for patients treated with the combination (< 0.55 and > 0.55 pmol/5x106 cells; n=75 genes). Interestingly, there was no overlap between the two sets of genes, indicating that different genes influence the accumulation of TGN when this drug is given alone or in combination with MTX. The association between gene expression profiles and TGN levels determined by leave-one-out cross-validation using support vector machine (SVM) based on Spearman correlation, was rho=0.60 (p<0.001) for MP alone and rho=0.65 (p<0.001) for MTX+MP, with false discovery rate (FDR) computed using Storey’s q-value (MP: 50% true positive, MTX+MP: 70% true positive respectively). Genes highly associated with the post-treatment TGN level in ALL patients treated with MP alone encode transporters, enzymes involved in the MP metabolic pathway and cell proliferation. Genes associated with post-treatment levels of TGN after combined therapy have been implicated in protein and ATP biosynthesis. Together, these in vivo data provide new insights into the basis of inter-patient differences in TGN accumulation in ALL cells, revealing significant differences between treatment with MP alone or in combination with MTX.


Sign in / Sign up

Export Citation Format

Share Document