scholarly journals Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset, frequency, and the nature of the mediators

Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4261-4275 ◽  
Author(s):  
A Ayala ◽  
CD Herdon ◽  
DL Lehman ◽  
CA Ayala ◽  
IH Chaudry

Apoptosis (Ao), is a process by which cells undergo a form of nonnecrotic cellular suicide. Although for most cells this is a constitutive process, it can be induced in immature and differentiating immune cell populations by stress mediators associated with inflammation. This inducible form of A(o) is referred to as programmed cell death. However, it is not clear whether hematopoietic cell populations such as the thymus and bone marrow are induced to undergo A(o) during polymicrobial sepsis. To assess this, thymocytes, bone marrow cells, or splenocytes (as a source of comparative nonhematopoietic cells) were harvested from C3H/HeN mice at 1, 4, or 24 hours after cecal ligation and puncture (CLP; to induce polymicrobial sepsis) or sham-CLP (Sham). The results showed that mixed bone marrow cells ex vivo, although not to the same extent as thymus, showed a marked increase in the percentage of cells in A(o), increased endonuclease activity, and a significant decrease in cell yield at 24 hours but not at 4 hours after CLP. Similar changes were not evident in splenocytes. Phenotypic, as well as morphologic assessment, indicated that most of the increase in apoptotic cells in the thymus was associated with the immature T cells (CD4+CD8+) and CD8-CD4- cells. In contrast, the increase in bone marrow cell A(o) was associated with only the B220+ cells, with no significant contribution from myeloid cells. Treatment of CLP mice in vivo with either RU-38486 or PEG-(rsTNF- R1)2 was unable to reverse the increased A(o) in the bone marrow of these animals. Taken together, these findings indicate that A(o) as a process induced by polymicrobial sepsis is not limited to the thymus, but can also be detected in the bone marrow. However, unlike thymic A(o), bone marrow is not affected directly/indirectly by glucocorticoids or tumor necrosis factor released during sepsis.

2017 ◽  
Vol 2 (1) ◽  
pp. 43
Author(s):  
S.G. Anikeev ◽  
V.N. Khodorenko ◽  
O.V. Kokorev ◽  
V.I. Shtin ◽  
V.E. Gunther

The structural features of porous-permeable TiNi-based materials obtained by sintering in depending on the temperature have been studied. It is shown that a material obtained at the sintering temperature of T2=1250 °C and time t=40 min has an optimal degree of sintering and relates to finely porous materials with the porosity of 55 %. A positive dynamics of development of bone marrow cells in the TiNi-based sintered material was proved. It is noted that the finely porous macrostructure with developed rough surface of pore walls provides favorable conditions for development of cell populations. When the 21 day of cultivation a dense formed tissue on basis of bone marrow cells observes in the material pores.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


2006 ◽  
Vol 291 (5) ◽  
pp. C1049-C1055 ◽  
Author(s):  
Takashi Kawasaki ◽  
Mashkoor A. Choudhry ◽  
Martin G. Schwacha ◽  
Kirby I. Bland ◽  
Irshad H. Chaudry

Traumatic and/or surgical injury as well as hemorrhage induces profound suppression of cellular immunity. Although local anesthetics have been shown to impair immune responses, it remains unclear whether lidocaine affects lymphocyte functions following trauma-hemorrhage (T-H). We hypothesized that lidocaine will potentiate the suppression of lymphocyte functions after T-H. To test this, we randomly assigned male C3H/HeN (6–8 wk) mice to sham operation or T-H. T-H was induced by midline laparotomy and ∼90 min of hemorrhagic shock (blood pressure 35 mmHg), followed by fluid resuscitation (4× shed blood volume in the form of Ringer lactate). Two hours later, the mice were killed and splenocytes and bone marrow cells were isolated. The effects of lidocaine on concanavalin A-stimulated splenocyte proliferation and cytokine production in both sham-operated and T-H mice were assessed. The effects of lidocaine on LPS-stimulated bone marrow cell proliferation and cytokine production were also assessed. The results indicate that T-H suppresses cell proliferation, Th1 cytokine production, and MAPK activation in splenocytes. In contrast, cell proliferation, cytokine production, and MAPK activation in bone marrow cells were significantly higher 2 h after T-H compared with shams. Lidocaine depressed immune responses in splenocytes; however, it had no effect in bone marrow cells in either sham or T-H mice. The enhanced immunosuppressive effects of lidocaine could contribute to the host's enhanced susceptibility to infection following T-H.


2000 ◽  
Vol 68 (6) ◽  
pp. 3455-3462 ◽  
Author(s):  
Nicola J. Rogers ◽  
Belinda S. Hall ◽  
Jacktone Obiero ◽  
Geoffrey A. T. Targett ◽  
Colin J. Sutherland

ABSTRACT With the aim of developing an appropriate in vitro model of the sequestration of developing Plasmodium falciparumsexual-stage parasites, we have investigated the cytoadherence of gametocytes to human bone marrow cells of stromal and endothelial origin. Developing stage III and IV gametocytes, but not mature stage V gametocytes, adhere to bone marrow cells in significantly higher densities than do asexual-stage parasites, although these adhesion densities are severalfold lower than those encountered in classical CD36-dependent assays of P. falciparum cytoadherence. This implies that developing gametocytes undergo a transition from high-avidity, CD36-mediated adhesion during stages I and II to a lower-avidity adhesion during stages III and IV. We show that this adhesion is CD36 independent, fixation sensitive, stimulated by tumor necrosis factor alpha, and dependent on divalent cations and serum components. These data suggest that gametocytes and asexual parasites utilize distinct sets of receptors for adhesion during development in their respective sequestered niches. To identify receptors for gametocyte-specific adhesion of infected erythrocytes to bone marrow cells, we tested a large panel of antibodies for the ability to inhibit cytoadherence. Our results implicate ICAM-1, CD49c, CD166, and CD164 as candidate bone marrow cell receptors for gametocyte adhesion.


Author(s):  
Carolina De Oliveira ◽  
Ana Paula R. Abud ◽  
Eneida Da Lozzo ◽  
Raffaello Di Bernardi ◽  
Simone De Oliveira ◽  
...  

Paracelsus once wrote: "All things are poison and nothing is without poison, only the dose permits something not to be poisonous." Latter Hahnemann formulated the law of similars, preparations which cause certain symptoms in healthy individuals if given in diluted form to patients exhibiting similar symptoms will cure it. Highly diluted natural complexes prepared according to Hahnemann’s ancient techniques may represent a new form of immunomodulatory therapy. The lack of scientific research with highly diluted products led us to investigate the in vivo and in vitro actions of commonly used medications. Here we describe the results of experimental studies aimed at verifying the effects of Mercurius solubilis, Atropa Belladonna, Lachesis muta and Bryonia alba. All medications were at 200cH dilution. Animals were maintained for 7 days and were allowed to drink the medications, which were prepared in a way that the final dilution and agitation (200cH) was performed in drinking water. The medication bottle was changed and sucussed every afternoon. Co-culture of non treated mice bone marrow cells and in vitro treated peritoneal macrophages were also performed. After animal treatment the bone marrow cells were immunophenotyped with hematopoietic lineage markers on a flow cytometer. We have determined CD11b levels on bone marrow cells after culture and co-culture with treated macrophages and these macrophages were processed to scanning electron microscopy. We have observed by morphological changes that macrophages were activated after all treatments. Mercurius solubilis treated mice showed an increase in CD3 expression and in CD11b on nonadherent bone marrow cells after co-culture with in vitro treatment. Atropa Belladonna increased CD45R and decreased Ly-6G expression on bone marrow cells after animal treatment. Lachesis muta increased CD3, CD45R and, CD11c expression and decreased CD11b ex vivo and in nonadherent cells from co-culture. Bryonia alba increased Ly-6G, CD11c and CD11b expression ex vivo and when in co-culture CD11b was increased in adherent cells as well as decreased in nonadherent cells. With these results we have demonstrated that highly diluted medications act on immune cells activating macrophages, and changing the expression profile of hematopoietic lineage markers. Highly diluted medications are less toxic and cheaper than other commonly used medications and based on our observations, it is therefore conceivable that this medications which are able to act on bone marrow and immune cells may have a potential therapeutic use in clinical applications in diseases were the immune system is affected and also as regenerative medicine as it may allow proliferation and differentiation of progenitor cells.


Blood ◽  
1984 ◽  
Vol 63 (4) ◽  
pp. 784-788 ◽  
Author(s):  
VF LaRussa ◽  
F Sieber ◽  
LL Sensenbrenner ◽  
SJ Sharkis

Abstract In this article, we present evidence that sialic acid-containing surface components play a role in the regulation of erythropoiesis. A 1- hr exposure of mouse bone marrow cells to high concentrations of neuraminidase reduced erythroid colony formation. Coculture of 10(6) untreated thymocytes with neuraminidase-treated bone marrow cells restored erythroid colony growth. Neuraminidase-treated thymocytes retained their ability to suppress erythroid colony formation by untreated marrow cells, but lost their ability to enhance erythroid colony formation. Continuous exposure to low concentrations of neuraminidase enhanced erythroid bone marrow cell colony growth in response to a suboptimal dose of erythropoietin.


2002 ◽  
Vol 283 (2) ◽  
pp. H468-H473 ◽  
Author(s):  
Tao-Sheng Li ◽  
Kimikazu Hamano ◽  
Kazuhiko Suzuki ◽  
Hiroshi Ito ◽  
Nobuya Zempo ◽  
...  

Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33°C under 2% O2-5% CO2-90% N2 (hypoxia) or 95% air-5% CO2 (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly ( P< 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 ± 5.5%) than with normoxia-cultured cells (67.0 ± 9.6%) or noncultured cells (70.4 ± 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.


2019 ◽  
Vol 64 (No. 7) ◽  
pp. 317-322
Author(s):  
N Mandro ◽  
YA Kopeikin ◽  
ZA Litvinova

The use of bone marrow-derived immunostimulants is a promising direction in poultry production. The objective of this research was to study the effect of introducing a bone marrow cell protein formulation on the immunity of chickens vaccinated against salmonellosis. According to the principle of analogues, a control and two experimental groups of chickens were formed with 20 heads each (in total 60 individuals). To Group 1 birds, a protein preparation from bovine bone marrow cells was administered with feed by irrigation with 10% suspension in physiological saline at a rate of 0.2 ml per head once per day from the first day of life for three days. In Group 2, the drug was administered once, on day 1, at a rate of 0.2 ml per head. Control chickens were injected with saline in the same volumes. All chickens were vaccinated against salmonellosis. Blood for analysis of cellular, biochemical and humoral indicators was taken on days 7 and 14 of bird life. The use of the bone marrow cell-derived protein preparation resulted in higher values in the blood of chickens of Groups 1 and 2, respectively, by day 14 of age in comparison with controls as follows: erythrocytes (15.51% and 22.28%) and leukocytes (3.93% and 3.70%), T- and B- lymphocytes (67.5% and 69.16%; 23.24% and 23.75%), neutrophil phagocytic activity (10.14% and 25.36%) and phagocytic index (17.25% and 18.74%), bactericidal (13.32% and 20.25%) and lysozyme activity (23.88% and 24.41%), total protein (13.23% and 14.21%), immunoglobulins (19.59% and 20.76%), specific antibody titre (47.50% and 51.25%). Our study confirms the suitability of using bone marrow-derived protein preparations in poultry production. In practical terms, our study has particular importance for the development and implementation of preparations based on proteins of bone marrow cells.


Blood ◽  
1971 ◽  
Vol 37 (3) ◽  
pp. 340-348 ◽  
Author(s):  
H. J. HEINIGER ◽  
L. E. FEINENDEGEN ◽  
K. BüRKI

Abstract Thymidine reutilization was studied in single cells of the rat bone marrow. Using 3H-TdR in parallel with 125I-UdR in conjunction with the autoradiographic technique, cells of the erythrocytic series, the megakaryocytic group, and the lymphoid cells were analyzed. Reutilization of thymidine was observed only in those cells known to synthesize DNA. An estimate of the amounts of the thymidine reutilized by the salvage pathway indicated that approximately 40-60 per cent of the thymidine in the blast cells is supplied from DNA of dead cells. This value is similar to that reported previously for whole bone marrow cell populations, suggesting the presence of a common thymidine pool within the bone marrow.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Sign in / Sign up

Export Citation Format

Share Document