Ki-4(scFv)–ETA′, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice

Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3909-3914 ◽  
Author(s):  
Stefan Barth ◽  
Michael Huhn ◽  
Bärbel Matthey ◽  
Samir Tawadros ◽  
Roland Schnell ◽  
...  

The human lymphocyte activation marker CD30 is highly overexpressed on Hodgkin/Reed–Sternberg cells and represents an ideal target for selective immunotherapy. We used the murine anti-CD30 hybridoma Ki-4 to construct a new recombinant immunotoxin (rIT) for possible clinical use in patients with CD30+ lymphoma. Hybridoma V genes were polymerase chain reaction-amplified, assembled, cloned, and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv obtained by selection of binding phage on the CD30-expressing Hodgkin lymphoma cell line L540cy was inserted into the bacterial expression vector pBM1.1 and fused to a deletion mutant ofPseudomonas exotoxin A (ETA′). Periplasmically expressed Ki-4(scFv)–ETA′ demonstrated specific activity against a variety of CD30+ lymphoma cells as assessed by different in vitro assays. To evaluate in vivo antitumor activity, severe combined immunodeficient mice challenged with human lymphoma cell lines were treated with the immunotoxin. The blood distribution time t½ of Ki-4(scFv)–ETA′ was 19 minutes, and its serum elimination time t½ was 193 minutes. A single intravenous injection of 40 μg rIT 1 day after tumor inoculation rendered 90% of the mice tumor free, extending the mean survival time to more than 200 days compared with 38.1 days in the phosphate-buffered saline control group (P < .001). This new rIT is a promising candidate for further clinical evaluation in patients with Hodgkin lymphoma or other CD30+malignancies.

Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3909-3914 ◽  
Author(s):  
Stefan Barth ◽  
Michael Huhn ◽  
Bärbel Matthey ◽  
Samir Tawadros ◽  
Roland Schnell ◽  
...  

Abstract The human lymphocyte activation marker CD30 is highly overexpressed on Hodgkin/Reed–Sternberg cells and represents an ideal target for selective immunotherapy. We used the murine anti-CD30 hybridoma Ki-4 to construct a new recombinant immunotoxin (rIT) for possible clinical use in patients with CD30+ lymphoma. Hybridoma V genes were polymerase chain reaction-amplified, assembled, cloned, and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv obtained by selection of binding phage on the CD30-expressing Hodgkin lymphoma cell line L540cy was inserted into the bacterial expression vector pBM1.1 and fused to a deletion mutant ofPseudomonas exotoxin A (ETA′). Periplasmically expressed Ki-4(scFv)–ETA′ demonstrated specific activity against a variety of CD30+ lymphoma cells as assessed by different in vitro assays. To evaluate in vivo antitumor activity, severe combined immunodeficient mice challenged with human lymphoma cell lines were treated with the immunotoxin. The blood distribution time t½ of Ki-4(scFv)–ETA′ was 19 minutes, and its serum elimination time t½ was 193 minutes. A single intravenous injection of 40 μg rIT 1 day after tumor inoculation rendered 90% of the mice tumor free, extending the mean survival time to more than 200 days compared with 38.1 days in the phosphate-buffered saline control group (P &lt; .001). This new rIT is a promising candidate for further clinical evaluation in patients with Hodgkin lymphoma or other CD30+malignancies.


2019 ◽  
Vol 12 (1) ◽  
pp. 58-71 ◽  
Author(s):  
Suchitil Rivera-Marrero ◽  
Laura Fernández-Maza ◽  
Samila León-Chaviano ◽  
Marquiza Sablón-Carrazana ◽  
Alberto Bencomo-Martínez ◽  
...  

Background: Alzheimer’s disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. </p><p> Methods: Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/A&#223; plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. </p><p> Results: The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the A&#946;-peptide, mainly through &#960;-&#960; interactions. According to a dynamic simulation study the ligand-A&#946; peptide complexes are stable in simulation-time (&#916;G = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to A&#946; plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11&#177;0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. </p><p> Conclusion: The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of A&#946; senile plaques.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5053-5053
Author(s):  
Jian Da Hu ◽  
Yi Huang ◽  
Yingyu Chen ◽  
Tiannan Wei ◽  
Tingbo Liu ◽  
...  

Abstract Baicalin is a traditional Chinese medicine with multiple biological effects. Some researches showed baicalin has anti-tumor effects in solid tumor, such as prostate cancer. In order to investigate its effects on proliferation inhibition and apoptosis induction in human lymphoma cell, we treated Burkitt lymphoma cell line CA46 with baicalin in vitro and in vivo of CA46 xenograft. Baicalin remarkably inhibited the cell proliferation, with an IC50 value of 10μM. Apoptosis was remarkably induced by baicalin in a dose-dependent manner, which was detected by Annexin V FITC/PI double staining analysis, TUNEL labeling method and DNA fragmentation respectively. Furthermore, RT-PCR showed that the mRNA expressions of c-myc and bcl-2 in treated CA46 cell decreased in a time-dependent manner. Western-Blot showed that the protein expressions of c-myc, bcl-2, procaspase-3 and PARP(116KD) in baicalin treated CA46 cell were down-regulated, while the expression of PARP(85KD) increased. Based on the results in vitro, we investigated in vivo efficacy of baicalin, alone or in combination with cytotoxic drug VP16, for treatment in CA46 nude mice xenograft. Baicalin with the dosage of 40mg/kg/d and 80kg/mg/d could remarkably inhibit the growth of the tumor compared with control group. Combination of baicalin and VP16 had better anti-tumor effects. Histological examination of tumor samples showed more necrotic cells in treated groups. And obvious apoptosis could be observed by electron microscope. No adverse events were found in treated groups. From above we could conclude that baicalin could efficiently induce proliferation inhibition and apoptosis of CA46 cells in vitro and in vivo, which may be related with the down-regulation of c-myc and bcl-2 expressions, as well as the up-regulation of caspase-3 activity.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5658-5658
Author(s):  
Mariana Bleker de Oliveira ◽  
Angela Isabel Eugenio ◽  
Veruska Lia Fook Alves ◽  
Daniela Zanatta ◽  
Mihoko Yamamoto ◽  
...  

Abstract Introduction: HSP70 has an integrative role in protein degradation due to the interaction with many pathways, such as ubiquitin proteasome (UPS), unfolded protein response (UPR) and autophagy. In multiple myeloma (MM) HSP70 is overexpressed and helps to prevent proteotoxic stress and cell death caused by overload of unfolded/misfolded proteins produced by tumor cells. Aims: To explore the role of HSP70 inhibition, isolated or in association with proteasome inhibitor, as therapeutic strategy for MM through in vitro and in vivo analyses. Methods: RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines were treated with HSP70 inhibitor (VER155008- 50 μM or 80μM) and proteasome inhibitor (bortezomib 100nM) for evaluation of apoptosis induction by flow cytometry using annexin V and propidium iodide. NOD.Cg-rkdcscid Il2rgtm1Wjl/SzJ immunodeficient mice were used for plasmacytoma xenograft model and treated with intravenous VER155008 (40mg/kg) and bortezomib (1mg/kg), immediately after transplant of RPMI8226-LUC-PURO and U266-LUC-PURO bioluminescent cell lines (N=3 for each group, including controls, bortezomib, VER155008, and combination of bortezomib and VER155008). Bioluminescence was measured in IVIS Kinetic (Capiler Life Science) once a day for seven days. Results: Bortezomib used as single treatment was able to induce apoptosis in RPMI8226-LUC-PURO cell line: the best result for in vitro studies RPMI8226-LUC-PURO was 65% of late apoptosis after treatment with bortezomib. On the other hand, U266-LUC-PURO cell line presented higher percentage of apoptosis when treated with bortezomib and VER155008 combination: U266-LUC-PURO cell line presented more than 60% of late apoptosis after VER155008 (80μM) combined with bortezomib, showing that inhibition of HSP70 could overcome U266-LUC-PURO resistance to bortezomib alone. Mice treated with VER155008, alone or in combination with bortezomib, showed complete inhibition of tumor growth (absence of bioluminescence) for both cell lines when compared with control group after one week of treatment (p<0.001, Two-way ANOVA). Therefore, in vivo studies using mice treated with VER155008, alone or in combination with bortezomib, prevented tumor development after one week of treatment, independent of the cell line used in the xenotransplant. Conclusion: Our study shows that HSP70 and proteasome inhibitors combination induced apoptosis in tumor cells in vivo for both MM cell lines. Since HSP70 is overexpressed in MM and connects several signaling pathways that maintain cell survival, such as UPS, UPR and autophagy, it can represent a key role to establish a new approach for the treatment of MM. Financial support: FAPESP 2010/17668-6 and CNPq (155272/2013-6). UNIFESP Ethics Committee (0219/12). Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 27 (1) ◽  
pp. 246 ◽  
Author(s):  
H. Fernandes ◽  
L. Schefer ◽  
F. C. Castro ◽  
C. L. V. Leal

Melatonin is a pineal hormone related to the control of the circadian cycle, besides the reproductive seasonality of some animal species, and has shown positive effects on oocyte maturation and embryo development. The aim of this study was to assess the effects of melatonin on in vivo and in vitro maturation of mouse oocytes. Female F1 hybrids (C57BL/6 × CBA; n = 8 per group/treatment) were used in 3 different treatments (trt) groups: (I) in vivo trt: mice received 2 different doses of melatonin injections, 10 and 20 mg kg–1 per IP including a saline control dose (0 mg kg–1 per IP) for 4 days along with ovarian stimulation trt of 5 IU of eCG IP, followed by 5 IU of hCG IP 48 h later, and cumulus-oocyte complexes (COC) were collected 16 h after hCG; (II) mice received a similar in vivo melatonin trt, but ovarian stimulation trt was only 5 IU of eCG, no hCG, and COC were collected after 48 h and subsequently matured in vitro with 0.5 µg mL–1 of FSH for 16 h; (III) in vitro maturation of oocytes: COC were collected 48 h after 5 IU of eCG and maturated in the presence of 3 different doses of melatonin (10–9, 10–6, and 10–3 M) or 0.5 µg mL–1 of FSH (control) for 16 h. In vitro-maturing oocytes were in incubated at 37°C, 5% CO2, and 95% humidity. Maturation rates were evaluated according to the presence of the first polar body under an inverted microscope. Statistical analyses were performed by ANOVA followed by Tukey's test (4 replicates). In the first treatment, 20 mg kg–1 of melatonin showed the highest in vivo maturation rate, 80.3% (61/76), while 10 mg kg–1 of melatonin was 62.4% (53/85) and the saline control group was 69.4% (77/111), but differences were not significant (P > 0.05). For in vitro maturation of oocytes from animals previously treated with melatonin, the 10 mg kg–1 of melatonin group had the highest maturation rate, 53.2% (99/186), in comparison with the saline and 20 mg kg–1 of melatonin groups, which showed 46.6 (88/189) and 39.0% (85/218), respectively; again, no differences were detected (P > 0.05). In the last treatment, the maturation rates increased from 48.9 (43/88) to 53.7 (51/95) and 56.0% (56/100) as the melatonin concentrations decreased from 10–3, 10–6, and 10–9 M, respectively. The control group had the highest rate of 57.3% (55/96), but no statistical differences were observed (P = 0.706). In conclusion, under the conditions studied, melatonin was unable to improve the maturation rate neither after in vivo nor in vitro treatment. However, during in vitro maturation, melatonin alone was as efficient as FSH in promoting maturation in murine oocytes, indicating its potential effect on stimulating meiosis. Therefore, the role of melatonin in stimulating meiosis needs further investigation.Acknowledgments to FAPESP for fellowship (HF) and funding (CLVL).


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Silvia I García ◽  
Ludmila S Peres Diaz ◽  
Maia Aisicovich ◽  
Mariano L Schuman ◽  
María S Landa

Cardiac TRH (cTRH) is overexpressed in the hypertrophied ventricle (LV) of the SHR. Additionally in vivo siRNA-TRH treatment induced downregulation of LV-TRH preventing cardiac hypertrophy and fibrosis demonstrating that TRH is involved in hypertrophic and fibrotic processes. Moreover, in a normal heart, the increase of LV TRH expression alone could induce structural changes where fibrosis and hypertrophy could be involved, independently of any other system alterations. Is well-known the cardiac hypertrophy/ fibrotic effects induced by AII, raising the question of whether specific LV cTRH inhibition might attenuates AII induced cardiac hypertrophy and fibrosis in mice. We challenged C57 mice with AII (osmotic pumps,14 days; 2 mg/kg) to induce cardiac hypertrophy vs saline. Groups were divided and , simultaneously to pump surgery, injected intracardiac with siRNA-TRH and siRNA-Con as its control. Body weight, water consume and SABP were measured daily. As expected, AII significantly increased SABP (p<0.05) in both groups treated , although cardiac hypertrophy (heart weight/body weight) was only evident in the group with the cardiac TRH system undamaged, suggesting that the cardiac TRH system function as a necessary mediator of the AII-induced hypertrophic effect. As hypothesized, we found an AII-induced increase of TRH (p<0.05) gene expression (real-t PCR) confirmed by immunofluorescence that was not observed in the group AII+siRNA-TRH demonstrating the specific siRNA treatment efficiency. Furthermore, AII significantly increase (p<0.05) BNP (hypertrophic marker), III collagen and TGFB (fibrosis markers) expressions only in the group with AII with the cardiac TRH system intact. On the contrary, the group with AII and the cTRH system inhibited, shows genes expressions similar to the saline control group. We confirmed these results by immunofluorescence. Similar fibrotic results were observed with NIH3T3 cell culture where we demonstrated that AII induced TRH gene expression (p<0.05) and its inhibition impedes AII-induced increase of TGFB and III/I collagens expressions telling us about the role of the cTRH in the AII fibrosis effects. Our results point out that the cardiac TRH is involved in the AII-induced hypertrophic and fibrotic effects.


2020 ◽  
pp. 153537022096696
Author(s):  
Leonardo Lima Fuscaldi ◽  
Joaquim Teixeira de Avelar Júnior ◽  
Daniel Moreira dos Santos ◽  
Daiane Boff ◽  
Vívian Louise Soares de Oliveira ◽  
...  

In the continuing search for novel antibiotics, antimicrobial peptides are promising molecules, due to different mechanisms of action compared to classic antibiotics and to their selectivity for interaction with microorganism cells rather than with mammalian cells. Previously, our research group has isolated the antimicrobial peptide LyeTx I from the venom of the spider Lycosa erythrognatha. Here, we proposed to synthesize three novel shortened derivatives from LyeTx I (LyeTx I mn; LyeTx I mnΔK; LyeTx I mnΔKAc) and to evaluate their toxicity and biological activity as potential antimicrobial agents. Peptides were synthetized by Fmoc strategy and circular dichroism analysis was performed, showing that the three novel shortened derivatives may present membranolytic activity, like the original LyeTx I, once they folded as an alpha helix in 2.2.2-trifluorethanol and sodium dodecyl sulfate. In vitro assays revealed that the shortened derivative LyeTx I mnΔK presents the best score between antimicrobial (↓ MIC) and hemolytic (↑ EC50) activities among the synthetized shortened derivatives, and LUHMES cell-based NeuriTox test showed that it is less neurotoxic than the original LyeTx I (EC50 [LyeTx I mnΔK] ⋙ EC50 [LyeTx I]). In vivo data, obtained in a mouse model of septic arthritis induced by Staphylococcus aureus, showed that LyeTx I mnΔK is able to reduce infection, as demonstrated by bacterial recovery assay (∼10-fold reduction) and scintigraphic imaging (less technetium-99m labeled-Ceftizoxime uptake by infectious site). Infection reduction led to inflammatory process and pain decreases, as shown by immune cells recruitment reduction and threshold nociception increment, when compared to positive control group. Therefore, among the three shortened peptide derivatives, LyeTx I mnΔK is the best candidate as antimicrobial agent, due to its smaller amino acid sequence and toxicity, and its greater biological activity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3264-3264
Author(s):  
Enzi Jiang ◽  
Eugene Park ◽  
Cu Nguyen ◽  
James Yoon ◽  
Yao-Te Hsieh ◽  
...  

Abstract Abstract 3264 Survivin, an inhibitor of apoptosis protein (IAP) family, has been associated with poor prognosis in cancer including leukemia. Survivin can be downregulated in colon cancer cells by inhibition of the β-catenin/Creb-binding protein (CBP) interaction using ICG-001, a small molecule specific inhibitor of the β-catenin/CBP interaction. We have shown previously that combined ICG-001 and chemotherapy can downregulate Survivin and sensitize ALL cells to chemotherapy in vitro and in a pilot study in vivo. In this study, we determine the CBP interaction with ICG-001 in primary ALL cells and preclinically evaluate ICG-001 in vitro and in vivo as an adjuvant against primary ALL and. For this purpose, primary ALL cells were co-cultured with OP9 cells and treated for 4 days with ICG-001 (10mM, 20mM) or DMSO as vehicle control. Mean viability (trypan blue exclusion) of cells treated with ICG-001 was significantly lower (ICG-001 10mM: 75.12% ± 3.15%; 20mM: 41.18%± 7.88%) compared to cells treated with DMSO (84.99% ± 0.42%) (% cell viability relative to initial control) (p=0.03). Real time RT-PCR showed ICG-001 dose-dependent downregulation of Survivin in ALL compared to control (ICG10mM vs. control: p=0.0037 and 20mM vs. control: p=0.0031). Immunoblotting demonstrated reduction of Survivin after ICG-001 treatment. Primary ALL cells incubated with a combination of VDL (Vincristine, Dexamethasone and L-Asparaginase) and ICG-001 showed decreased viability (28.7%± 4.9%) versus VDL only (79.3%± 13.6%) (p=0.014) determined by MTT assay. To elucidate if ICG-001 interacts with β-catenin/CBP as shown previously in colon cancer, we analyzed ten primary pre-B ALL cells and found significantly greater γ-catenin and Survivin expression versus normal pre-B-Cells. β-catenin was absent or in some cases expressed only weakly. Expression of v-catenin and b-catenin in ALL xenograft cells were detected by Western blot. One primary ALL was selected and incubated with γ-catenin and β-catenin siRNA for 48hrs, followed by 6hrs incubation with Wnt3a. Wnt3a induced both of γ-catenin and β-catenin expression. Survivin was reduced by γ-catenin siRNA but not β-catenin siRNA treatment. Addition of Wnt3a partially recovered the decrease of Survivin. In addition, Survivin was knocked down in primary ALL using shRNA and non-silencing shRNA control or ICG-001 (2uM) and DMSO control. Western blot analysis showed that survivin shRNA or ICG-001 treatment lead to downregulation of Survivin and γ-catenin. Using a ChIP assay we could demonstrate occupancy of TCF4 and CBP association at the Survivin promoter, which was not altered by ICG-001 in primary ALL. Moreover, ICG-001 treatment of primary ALL cells prevents CBP but not p300 occupancy. For further preclinical in vivo evaluation of ICG-001, one Philadelphia chromosome positive ALLs (Ph+) and two Ph− primary ALL were injected into sublethally irradiated NOD/SCID IL2Rγ−/-mice and treated with ICG-001 (50mg or 100mg/kg/day per subcutaneous miniosmotic pump) with or without chemotherapy including VDL for Ph− ALL (per intraperitoneal injections) or Nilotinib for Ph+ ALL (per os). For analysis we pooled the survival of all three primary leukemias. The saline control group (n=10) (MST= 55.5.days) and the ICG-001 only groups (n=3) (MST=61 days) died rapidly. The group treated with chemotherapy (n=13) had a median survival time (MST) of 85 days. In marked contrast, the group treated with the combined chemotherapy+ICG-001 (n=15) lived significantly longer (MST=100) (p<0.05). Taken together, our data shows that Survivin transcription can be mediated by γ-catenin in primary ALL and that targeting CBP/γ-catenin by using ICG-001 ALL can sensitize ALL cells to chemotherapy in vitro and in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1562-1562
Author(s):  
Roberta Zappasodi ◽  
Alessandra Cavanè ◽  
Monica Tortoreto ◽  
Cristina Tringali ◽  
Giusi Ruggiero ◽  
...  

Abstract Abstract 1562 Our previous findings have made it clear that the significant clinical efficacy attained by dendritic cell-based vaccination in relapsed B-cell non-Hodgkin lymphoma (B-NHL) patients is firmly associated with multifaceted immunologic responses, including the development of anti-heat shock protein (HSP)105 humoral immunity (Di Nicola et al., Blood 2009 113:18–27; Zappasodi et al., Cancer Res. 2010 70:9062–9072; Zappasodi et al., Blood 2011 118:4421–4430). Human HSP105 is a high-molecular-weight chaperone constitutively expressed at low levels within the cytoplasm, and can also be induced in the nucleus by various forms of stress. It is overexpressed in several solid tumors, including melanoma, breast, thyroid and gastroenteric cancers. We have recently shown that this is also true for B-NHLs, in which HSP105 levels increase in function of their aggressiveness and proliferation index (Zappasodi et al., Blood 2011 118:4421–4430). Accordingly, in normal lymph nodes HSP105 expression is confined to the hyper-proliferating germinal center (GC) B cells, suggesting its involvement in the potentially oncogenic GC reactions. We have now set out to clarify the functional role of HSP105 in B-NHLs by stably silencing its expression in the Namalwa aggressive lymphoma cell line. Namalwa cells were infected by using a lentiviral vector carrying a HSP105-targeting pre-microRNA sequence and the Emerald Green Fluorescent Protein (EmGFP) gene, both under the human cytomegolovirus immediate early promoter, as well as the blasticidin resistance gene. Control cells were mock-infected with the empty vector. Infected cells were initially selected in the presence of blasticidin, and then single GFP+ cells were sorted on a flow cytometry device. In this way, we achieved 100% GFP+ subclones that displayed a specific constitutive down-regulation of HSP105, as there was no significant decrease in the expression of its cognate molecular homolog HSP70, or the other major cellular chaperone HSP90. Comparison of the in vitro proliferation rate of two silenced clones with that of the mock culture showed that the cell doubling time of both clones significantly increased and their in vitro growth was accordingly delayed (P= 0.01 and P= 0.04). Western blot analysis in 6 different silenced clones of the oncoproteins most frequently involved in B-NHLs revealed that BCL-6 and c-Myc were down-regulated in function of HSP105 knockdown levels, whereas in mock cells no modifications were detected with respect to their wild-type counterparts. Further strengthening the association between HSP105, BCL-6 and c-Myc expression, immunohistochemistry analysis of 50 primary human aggressive B-NHLs revealed that HSP105 expression, measured both as intensity and percentage of positive cells, was significantly higher in c-Myc- or BCL-6-dependent Burkitt (P= 0.0264) and diffuse large B-cell lymphomas (P= 0.0068) respectively than in other aggressive istotypes that do not overexpress these oncoproteins. These findings support the potential pro-tumorigenic cooperation of HSP105 with BCL-6 and c-Myc transcription factors. To find out whether counteracting HSP105 functions hampers in vivo lymphoma growth, we evaluated the tumor-forming capability of HSP105-silenced (siHSP105) or mock Namalwa cells subcutaneously injected into severe combined immunodeficient mice at serial 10-fold dilutions from 106 to 104 cells/injection (Figure 1). We found that HSP105 knockdown slightly delayed in vivo Namalwa tumor formation when 106 and 105 cells were injected. Noteworthy, no lesions appeared over 70-day observation in mice inoculated with 104 siHSP105 cells, whereas palpable tumors were present in 67% of the animals 24 days after injection of the mock cells (Figure 1). Overall, these results indicate that HSP105 may be a per se nononcogenic molecule that contributes to lymphomagenesis by facilitating the tumorigenic functions of key oncoproteins. They equally provide the rationale for developing HSP105 inhibitors as a novel strategy for improving the treatment of aggressive B-NHLs. Figure 1. In vivo tumor-forming capability of siHSP105 or mock Namalwa cells Figure 1. In vivo tumor-forming capability of siHSP105 or mock Namalwa cells Disclosures: Gianni: Hoffmann-La Roche: Consultancy, Honoraria.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Feixiang Wu ◽  
Yantao Liu ◽  
Xin Lv ◽  
Xuerong Miao ◽  
Yuming Sun ◽  
...  

Objective. The present study was to investigate the feasibility of adenovirus-mediated small interference RNA (siRNA) targeting Toll-like receptor 4 (TLR4) gene in ameliorating lipopolysaccharide- (LPS-) induced acute lung injury (ALI).Methods.In vitro, alveolar macrophages (AMs) were treated with Ad-siTLR4 and Ad-EFGP, respectively, for 12 h, 24 h, and 48 h, and then with LPS (100 ng/mL) for 2 h, and the function and expression of TLR4 were evaluated.In vivo, rats received intratracheal injection of 300 μL of normal saline (control group), 300 μL of Ad-EGFP (Ad-EGFP group), or 300 μL of Ad-siTLR4 (Ad-siTLR4 group) and then were intravenously treated with LPS (50 mg/kg) to induce ALI.Results. Ad-siTLR4 treatment significantly reduced TLR4 expression and production of proinflammatory cytokines following LPS treatment bothin vitroandin vivo. Significant alleviation of tissue edema, microvascular protein leakage, and neutrophil infiltration was observed in the AdsiTLR4-treated animals.Conclusion. TLR4 plays a critical role in LPS-induced ALI, and transfection of Ad-siTLR4 can effectively downregulate TLR4 expressionin vitroandin vivo, accompanied by alleviation of LPS-induced lung injury. These findings suggest that TLR4 may serve as a potential target in the treatment of ALI and RNA interfering targeting TLR4 expression represents a therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document