scholarly journals Emerging role of BCR signaling inhibitors in immunomodulation of chronic lymphocytic leukemia

2017 ◽  
Vol 1 (21) ◽  
pp. 1867-1875 ◽  
Author(s):  
Kamira Maharaj ◽  
Eva Sahakian ◽  
Javier Pinilla-Ibarz

Abstract Approved therapies that target the B-cell receptor (BCR) signaling pathway, such as ibrutinib and idelalisib, are known to show activity in chronic lymphocytic leukemia (CLL) via their direct effects on crucial survival pathways in malignant B cells. However, these therapies also have effects on T cells in CLL by mediating toxicity and possibly controlling disease. By focusing on the effects of BCR signaling inhibitors on the T-cell compartment, we may gain new insights into the comprehensive biological outcomes of systemic treatment to further understand mechanisms of drug efficacy, predict the toxicity or adverse events, and identify novel combinatorial therapies. Here, we review T-cell abnormalities in preclinical models and patient samples, finding that CLL T cells orchestrate immune dysfunction and immune-related complications. We then continue to address the effects of clinically available small molecule BCR signaling inhibitors on the immune cells, especially T cells, in the context of concomitant immune-mediated adverse events and implications for future treatment strategies. Our review suggests potentially novel mechanisms of action related to BCR inhibitors, providing a rationale to extend their use to other cancers and autoimmune disorders.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 178-178
Author(s):  
Stefania Gobessi ◽  
Aleksandar Petlickovski ◽  
Luca Laurenti ◽  
Dimitar G. Efremov

Abstract The protein tyrosine kinase ZAP-70 is expressed at high levels in leukemic B-cells from chronic lymphocytic leukemia (CLL) patients with progressive disease and short survival. ZAP-70 is a key component of the proximal T-cell receptor signaling pathway and is highly homologous to Syk, an important B-cell receptor signaling (BCR) molecule. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is still not well understood. In T-cells, upon TCR stimulation ZAP-70 becomes phosphorylated on Tyr319 by the Src-like kinase Lck, which results in the release of the ZAP-70 kinase domain from an autoinhibited state to a fully active conformation. The Tyr319 site in ZAP-70 corresponds to the Tyr352 site in Syk, which is phosphorylated in B-cells following BCR stimulation. We therefore investigated the activation status of ZAP-70 and Syk in BCR stimulated CLL B-cells, using phosphorylation of Tyr319 and Tyr352 as markers of their activation. Analysis of 10 ZAP-70-positive CLL samples by immunoblotting with the phospho-ZAP70Tyr319/SykTyr352 antibody revealed that ZAP-70 is not phosphorylated at this site either before or after BCR stimulation, although in control experiments with Jurkat T-cells ZAP-70 became phosphorylated on Tyr319 upon TCR stimulation. Moreover, the Tyr352 site in Syk was phosphorylated following BCR stimulation in 6 of the 10 CLL B-cell samples. To further investigate the reasons for the unexpected lack of ZAP-70 activation in CLL B-cells, we produced stable transfectants of the BJAB lymphoma B-cell line that expressed ZAP-70 at levels similar to those found in CLL cases with progressive disease. In agreement with the CLL B-cell experiments, the Tyr319 site in ZAP-70 was not phosphorylated either before or after BCR stimulation. Since phosphorylation of Tyr319 is Lck-dependent in T-cells, and this kinase is expressed also in CLL B-cells, we ectopically expressed Lck in the ZAP-70-positive BJAB clones. Again, the Tyr319 site was not phosphorylated, indicating that ZAP-70 does not undergo activation of the kinase domain also in this cellular system. In contrast, BCR crosslinking in BJAB cells induced significant phosphorylation of Tyr352 in Syk, which was further enhanced in the clones that coexpressed ZAP-70. Furthermore, analysis of downstream signaling pathways following BCR stimulation showed stronger and prolonged activation of ERK and to a lesser extent Akt in the ZAP-70 positive clones, whereas no difference was observed in terms of activation of PLC-γ 2, JNK and degradation of the NF-kB inhibitor IkB. These data indicate that ZAP-70 does not undergo full activation in B-cells, but can still enhance activation of certain downstream BCR signaling pathways, possibly by affecting the activity of the related PTK Syk.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2152-2156 ◽  
Author(s):  
F Picard ◽  
T Martin ◽  
F Legras ◽  
B Lioure ◽  
JL Pasquali

Abstract Human T-cell chronic lymphocytic leukemia (T-cell CLL) is a heterogeneous disease characterized by a monoclonal malignant proliferation of T cells in which the T-cell receptors (TCRs) can be, when expressed, considered to be membrane tumor-specific antigens. Owing to the increasing number of available monoclonal antihuman TCR reagents, it could be of interest to evaluate the feasibility of anti- TCR treatment during T-cell CLL. To test the therapeutic potentiality of anti-TCR monoclonal antibodies, we first analyzed the intraclonal variability in two terminally ill patients suffering from TCR alpha beta-positive cell CLL bearing different immunophenotypes. The cDNA corresponding to the variable regions of the TCR beta chains originating from the malignant T cells were amplified, cloned into M13 phages, and sequenced. The sequence analysis of multiple independent clones showed no intraclonal variability, with no evidence for ongoing hypermutation in the V beta region genes. The relevance of these findings with regard to an anti-V beta therapy and the comparison with similar analysis during B-cell monoclonal lymphoproliferations are discussed.


Author(s):  
Danielle Brander ◽  
Prioty Islam ◽  
Jacqueline C. Barrientos

The treatment landscape for chronic lymphocytic leukemia (CLL) is rapidly evolving, with multiple agents recently approved. They include a glycoengineered monoclonal antibody (obinutuzumab), B-cell receptor signaling inhibitors (ibrutinib, idelalisib, and duvelisib), and the BCL-2 inhibitor (venetoclax). These compounds are dramatically changing the natural course of the disease. Nonetheless, despite improved survival rates, particularly in higher-risk disease (older adults, patients with unmutated IGHV, del(11q), and del(17p)/ TP53 mutated), there is still room for progress. Given the panoply of highly effective therapies commercially available, it is important to define a tailored treatment strategy for this heterogeneous condition that considers balance of treatment efficacy versus toxicity or tolerance. This article summarizes the most promising clinical advances by reviewing the data from recent clinical trials and discussing meaningful clinical endpoints, including the role of minimal residual disease assessment. The recent development of therapies targeting dysregulated pathways is revolutionary and may ultimately lead us to not only achieve prolonged remission durations but also envision the possibility of a functional cure for a larger population of patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Elisavet Vlachonikola ◽  
Kostas Stamatopoulos ◽  
Anastasia Chatzidimitriou

Chronic lymphocytic leukemia (CLL) is a malignancy of mature, antigen-experienced B lymphocytes. Despite great progress recently achieved in the management of CLL, the disease remains incurable, underscoring the need for further investigation into the underlying pathophysiology. Microenvironmental crosstalk has an established role in CLL pathogenesis and progression. Indeed, the malignant CLL cells are strongly dependent on interactions with other immune and non-immune cell populations that shape a highly orchestrated network, the tumor microenvironment (TME). The composition of the TME, as well as the bidirectional interactions between the malignant clone and the microenvironmental elements have been linked to disease heterogeneity. Mounting evidence implicates T cells present in the TME in the natural history of the CLL as well as in the establishment of certain CLL hallmarks e.g. tumor evasion and immune suppression. CLL is characterized by restrictions in the T cell receptor gene repertoire, T cell oligoclonal expansions, as well as shared T cell receptor clonotypes amongst patients, strongly alluding to selection by restricted antigenic elements of as yet undisclosed identity. Further, the T cells in CLL exhibit a distinctive phenotype with features of “exhaustion” likely as a result of chronic antigenic stimulation. This might be relevant to the fact that, despite increased numbers of oligoclonal T cells in the periphery, these cells are incapable of mounting effective anti-tumor immune responses, a feature perhaps also linked with the elevated numbers of T regulatory subpopulations. Alterations of T cell gene expression profile are associated with defects in both the cytoskeleton and immune synapse formation, and are generally induced by direct contact with the malignant clone. That said, these abnormalities appear to be reversible, which is why therapies targeting the T cell compartment represent a reasonable therapeutic option in CLL. Indeed, novel strategies, including CAR T cell immunotherapy, immune checkpoint blockade and immunomodulation, have come to the spotlight in an attempt to restore the functionality of T cells and enhance targeted cytotoxic activity against the malignant clone.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4947-4947
Author(s):  
Menna Hodge ◽  
Susan O’Brien ◽  
Adam Abdool ◽  
Michael Keating ◽  
Iman Jilani ◽  
...  

Abstract </DEL> CD5, a transmembrane protein expressed in T-cells, few B-cells, and chronic lymphocytic leukemia (CLL) B-cells, is the ligand for CD72 and may play a role in B-cell-T-cell communication. CD5 is part of the T-cell receptor (TCR)-CD3 complex in T-cells as well as the B-cell receptor (BCR) complex and serves as substrate for induction of tyrosine kinase activity. Since leukemic cells have high turnover and pour their protein, RNA, and DNA into the circulation, we speculated that free circulating CD3 (cCD3) and CD5 (cCD5) could be detected in the plasma of patients with CLL. We have developed a bead-based sandwich immunoassay to measure cCD3 and cCD5 in the plasma. Using this assay, we assessed the value of cCD5 measurement, alone and after normalization to cCD3 levels, as a tumor marker in CLL. Plasma levels of cCD3 and cCD5 were measured in 85 patients with CLL and 51 normal control subjects. cCD3 and cCD5 levels were significantly higher in patients with CLL (median, 7,465 and 55,806 U/μl, respectively) than in normal control subjects (median, 830 and 1,671 U/μl, respectively). Patients with CLL had significantly higher cCD5:cCD3 ratios (median, 5.28; range, 0–161) than did normal controls (median, 1.70; range, 0–8.06) (P <0.0001). Levels of cCD5, but not cCD3, correlated positively with WBC count, β2-microglobulin level, splenomegaly, and Rai stage (all P <0.01). The cCD5:cCD3 ratio also correlated with Rai stage (P = 0.04) and β2-microglobulin level (P = 0.03). cCD5 levels and the cCD5:cCD3 ratio both correlated with survival (P = 0.03). These findings confirm that free circulating surface markers can be detected in the circulation of patients with CLL, most likely reflect the tumor load, and can be used as tumor markers. The biological and therapeutic relevance of these free circulating proteins should be considered in pharmacokinetic and pharmacodynamic studies.


Blood ◽  
2020 ◽  
Author(s):  
Sonali Sharma ◽  
Gabriela Pavlasova ◽  
Vaclav Seda ◽  
Katerina Cerna ◽  
Eva Vojackova ◽  
...  

B cell receptor (BCR) signaling and T cell interactions play a pivotal role in chronic lymphocytic leukemia (CLL) pathogenesis and disease aggressiveness. CLL cells can utilize microRNAs (miRNAs) and their targets to modulate microenvironmental interactions in the lymph node niches. To identify miRNA expression changes in the CLL microenvironment, we performed complex profiling of short non-coding RNAs in this context by comparing CXCR4/CD5 intraclonal cell subpopulations (CXCR4dimCD5bright vs. CXCR4brightCD5dim cells). This identified dozens of differentially expressed miRNAs including several that have previously been shown to modulate BCR signaling (miR-155, miR-150, and miR-22), but also other candidates for a role in microenvironmental interactions. Notably, all three miR-29 family members (miR-29a, miR-29b, miR-29c) were consistently down-modulated in the immune niches, and lower miR-29(a/b/c) levels associated with an increased relative responsiveness of CLL cells to BCR ligation, and significantly shorter overall survival of CLL patients. We identified Tumor-Necrosis Factor Receptor-Associated Factor 4 (TRAF4) as a novel direct target of miR-29s and revealed that higher TRAF4 levels increase CLL responsiveness to CD40 activation and downstream NFkB signaling. In CLL, BCR-represses miR-29 expression via MYC, allowing for concurrent TRAF4 upregulation and stronger CD40-NFkB signaling. This regulatory loop is disrupted by "BCR inhibitors" (BTK inhibitor ibrutinib or PI3K inhibitor idelalisib). In summary, we showed for the first time that a miRNA-dependent mechanism acts to activate CD40 signaling/T-cell interactions in a CLL microenvironment and described a novel miR-29-TRAF4-CD40 signaling axis modulated by the BCR activity.


2019 ◽  
Vol 21 (1) ◽  
pp. 68 ◽  
Author(s):  
Maissa Mhibik ◽  
Adrian Wiestner ◽  
Clare Sun

B-cell receptor (BCR) signaling and tumor–microenvironment crosstalk both drive chronic lymphocytic leukemia (CLL) pathogenesis. Within the microenvironment, tumor cells shape the T-cell compartment, which in turn supports tumor growth and survival. Targeting BCR signaling using Bruton tyrosine kinase inhibitors (BTKi) has become a highly successful treatment modality for CLL. Ibrutinib, the first-in-class BTKi, also inhibits Tec family kinases such as interleukin-2–inducible kinase (ITK), a proximal member of the T-cell receptor signaling cascade. It is increasingly recognized that ibrutinib modulates the T-cell compartment of patients with CLL. Understanding these T-cell changes is important for immunotherapy-based approaches aiming to increase the depth of response and to prevent or treat the emergence of resistant disease. Ibrutinib has been shown to improve T-cell function in CLL, resulting in the expansion of memory T cells, Th1 polarization, reduced expression of inhibitory receptors and improved immune synapse formation between T cells and CLL cells. Investigating the modulation of BTKi on the T-cell antitumoral function, and having a more complete understanding of changes in T cell behavior and function during treatment with BTKi therapy will inform the design of immunotherapy-based combination approaches and increase the efficacy of CLL therapy.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2152-2156
Author(s):  
F Picard ◽  
T Martin ◽  
F Legras ◽  
B Lioure ◽  
JL Pasquali

Human T-cell chronic lymphocytic leukemia (T-cell CLL) is a heterogeneous disease characterized by a monoclonal malignant proliferation of T cells in which the T-cell receptors (TCRs) can be, when expressed, considered to be membrane tumor-specific antigens. Owing to the increasing number of available monoclonal antihuman TCR reagents, it could be of interest to evaluate the feasibility of anti- TCR treatment during T-cell CLL. To test the therapeutic potentiality of anti-TCR monoclonal antibodies, we first analyzed the intraclonal variability in two terminally ill patients suffering from TCR alpha beta-positive cell CLL bearing different immunophenotypes. The cDNA corresponding to the variable regions of the TCR beta chains originating from the malignant T cells were amplified, cloned into M13 phages, and sequenced. The sequence analysis of multiple independent clones showed no intraclonal variability, with no evidence for ongoing hypermutation in the V beta region genes. The relevance of these findings with regard to an anti-V beta therapy and the comparison with similar analysis during B-cell monoclonal lymphoproliferations are discussed.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document