scholarly journals Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies

2020 ◽  
Vol 4 (20) ◽  
pp. 5269-5284
Author(s):  
Amy M. Trottier ◽  
Lawrence J. Druhan ◽  
Ira L. Kraft ◽  
Amanda Lance ◽  
Simone Feurstein ◽  
...  

Abstract Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.

2009 ◽  
Vol 27 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Kambiz Sarahrudi ◽  
Mehdi Mousavi ◽  
Karl Grossschmidt ◽  
Nezir Sela ◽  
Franz König ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 13-13
Author(s):  
Xin Chen ◽  
Bichen Wang ◽  
Aiming Pang ◽  
Erlie Jiang ◽  
Yajing Chu ◽  
...  

Purpose: Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in a variety of myeloid disorders, such as severe congenital neutropenia (SCN), chronic neutrophilic leukemia (CNL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and atypical chronic myelogenous leukemia (aCML). Although CSF3R point mutations (e.g., T618I) are emerging as key players in CNL/aCML, the significance of rarer CSF3R mutations is unknown. We report a case of philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) with the M696T mutation in CSF3R gene and assess the pathogenicity of the CSF3R M696T mutation in Ph+ ALL. Experimental Design: Here we report on a 32-year-old female who presented with asthenia. The initial hematological workup revealed white blood cell (WBC) count of 97 x 109/L (normal range 4-10 x 109/L). There was 84% prolymphocyte in the bone marrow. The immunophenotype of the blasts as judged from flow cytometry was in accordance with a B-ALL. The fusion gene for BCR-ABL P210 was positive. Hot mutation closely related to diseases was: CSF3R (nucleotide change c.2087 T>C, amino acid change p.M696T, mutation frequency 50.4%). Cytogenetic analysis showed 46, XX, t (9;22) (q34;q11). The patient was diagnosed as Ph+ ALL with the CSF3R M696T mutation and achieved Long-term survival after unrelated donor hematopoietic stem cell transplantation. Meanwhile we performed a series of experiments using murine interleukin 3 (IL-3)-dependent Ba/F3 cell line to evaluate the transforming capacity of the CSF3R M696T mutation. The phosphorylation of STAT3 was analyzed by G-CSF dependence assays and immunoblot analysis to evaluate the CSF3R M696T mutation contribution to the tumor transformation ability of Ba/F3 cells. Results: This patient achieved complete remission with chemotherapy in combination with tyrosine kinase inhibitor (TKI) and long-term survival by unrelated donor transplantation. We confirmed the presence of a CSF3R M696T germline mutation in this patient, and the mutation was inherited from her mother. The experiments in vitro result showed the CSF3R M696T mutation harbors marginal contribution to the tumor transformation ability of Ba/F3 cells. CSF3R M696T mutation was neutral in tumor transformation ability. Conclusions: We believe that TKI is still effective in patients with the CSF3R M696T mutation in Ph+ ALL. Donor with CSF3R M696T mutation might still be selected. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document