Longitudinal follow-up of older former smokers reveals rapid decline in muscle oxidative capacity and physical activity

Author(s):  
Harry B. Rossiter ◽  
Fenghai Duan ◽  
Robert A. Calmelat ◽  
Kelsey Williams ◽  
Richard Casaburi ◽  
...  
2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S84-S85
Author(s):  
Fatemeh Adelnia ◽  
Jacek Urbanek ◽  
Yusuke Osawa ◽  
Michelle Shardell ◽  
Eleanor M Simonsick ◽  
...  

Abstract Age-related decline in muscle oxidative capacity negatively affects muscle function and mobility, which may lead to disability and frailty. Whether exercise and other life-style practices reduce age-related decline in muscle oxidative capacity is unclear. We assessed whether, after accounting for age, higher daily physical activity levels are associated with greater muscle oxidative capacity. Participants included 384 adults (54.7% women) aged 22 to 92 years from the Baltimore Longitudinal Study of Aging. Muscle oxidative capacity was measured in vivo using phosphorous magnetic resonance spectroscopy. We determined the time constant for phosphocreatine recovery (τPCr, in seconds) after exercise, with lower values of τPCr reflecting greater oxidative capacity. Time spent in moderate-to-vigorous physical activity (MVPA) was assessed using accelerometers that participants wore for 5.9 ± 0.9 consecutive days in the free-living environment. In linear regression models, older age was associated with higher τPCr (β = 0.39, p-value <.001) after adjusting for sex, race, height and weight. After including MVPA as an independent variable, the standardized regression coefficient for age was attenuated by 40% to 0.22. p-value <.001). MVPA was strongly associated with lower τPCr (β = -0.33, p-value <.001) after adjusting for health status, education and smoking history and was only attenuated by 3% after additional adjustment for age. These results suggest that MVPA is strongly associated with muscle oxidative capacity independent of age, providing mechanistic insights into the health benefits of daily physical activity in older persons.


2016 ◽  
Vol 41 (11) ◽  
pp. 1137-1145 ◽  
Author(s):  
Liam F. Fitzgerald ◽  
Anita D. Christie ◽  
Jane A. Kent

Despite intensive efforts to understand the extent to which skeletal muscle mitochondrial capacity changes in older humans, the answer to this important question remains unclear. To determine what the preponderance of evidence from in vivo studies suggests, we conducted a systematic review and meta-analysis of the effects of age on muscle oxidative capacity as measured noninvasively by magnetic resonance spectroscopy. A secondary aim was to examine potential moderators contributing to differences in results across studies, including muscle group, physical activity status, and sex. Candidate papers were identified from PubMed searches (n = 3561 papers) and the reference lists of relevant papers. Standardized effects (Hedges’ g) were calculated for age and each moderator using data from the 22 studies that met the inclusion criteria (n = 28 effects). Effects were coded as positive when older (age, ≥55 years) adults had higher muscle oxidative capacity than younger (age, 20–45 years) adults. The overall effect of age on oxidative capacity was positive (g = 0.171, p < 0.001), indicating modestly greater oxidative capacity in old. Notably, there was significant heterogeneity in this result (Q = 245.8, p < 0.001; I2 = ∼70%–90%). Muscle group, physical activity, and sex were all significant moderators of oxidative capacity (p ≤ 0.029). This analysis indicates that the current body of literature does not support a de facto decrease of in vivo muscle oxidative capacity in old age. The heterogeneity of study results and identification of significant moderators provide clarity regarding apparent discrepancies in the literature, and indicate the importance of accounting for these variables when examining purported age-related differences in muscle oxidative capacity.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Harry B. Rossiter ◽  
Rongsong Li ◽  
Chih-Chiang Chang ◽  
Chi-Hong Tseng ◽  
Tzung K. Hsiai ◽  
...  

2019 ◽  
Vol 67 (8) ◽  
pp. 1695-1699 ◽  
Author(s):  
Fatemeh Adelnia ◽  
Jacek Urbanek ◽  
Yusuke Osawa ◽  
Michelle Shardell ◽  
Nicholas A. Brennan ◽  
...  

2013 ◽  
Vol 305 (2) ◽  
pp. E171-E182 ◽  
Author(s):  
Juha J. Hulmi ◽  
Bernardo M. Oliveira ◽  
Mika Silvennoinen ◽  
Willem M. H. Hoogaars ◽  
Arja Pasternack ◽  
...  

The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3–4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.


2000 ◽  
Vol 89 (3) ◽  
pp. 1072-1078 ◽  
Author(s):  
Jane A. Kent-Braun ◽  
Alexander V. Ng

It has been suggested that a decline in skeletal muscle oxidative capacity is a general consequence of aging in humans. However, previous studies have not always controlled for the effects of varying levels of physical activity on muscle oxidative capacity. To test the hypothesis that, when matched for comparable habitual physical activity levels, there would be no age-related decline in the oxidative capacity of a locomotor muscle, the postexercise recovery time of phosphocreatine was compared in the tibialis anterior muscle of young [ n = 19; 33.8 ± 4.8 (SD) yr] and older [ n = 18; 75.5 ± 4.5 yr] healthy women and men of similar, relatively low, activity levels. The intramuscular metabolic measurements were accomplished by using phosphorus magnetic resonance spectroscopy. The results indicate that there was no age effect on the postexercise recovery time of phosphocreatine recovery, thus supporting the stated hypothesis. These data suggest that there is no requisite decline in skeletal muscle oxidative capacity with aging in humans, at least through the seventh decade.


2003 ◽  
Vol 2 (1) ◽  
pp. 29-30
Author(s):  
A GARNIER ◽  
D FORTIN ◽  
C DELOMENIE ◽  
I MOMKEN ◽  
V VEKSLER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document