scholarly journals Involvement of co-repressor LUH and the adapter proteins SLK1 and SLK2 in the regulation of abiotic stress response genes in Arabidopsis

2014 ◽  
Vol 14 (1) ◽  
pp. 54 ◽  
Author(s):  
Barsha Shrestha ◽  
Bhuwan Guragain ◽  
Vaniyambadi V Sridhar
2021 ◽  
Vol 22 (12) ◽  
pp. 6437
Author(s):  
Muthusamy Muthusamy ◽  
Jonghee Kim ◽  
Sukhee Kim ◽  
Soyoung Park ◽  
Sooin Lee

Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65–89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.


2016 ◽  
pp. pp.00035.2016 ◽  
Author(s):  
Elizabeth Kalinda Brauer ◽  
Nagib Ahsan ◽  
Renee Dale ◽  
Naohiro Kato ◽  
Alison E Coluccio ◽  
...  

2014 ◽  
Vol 78 (6) ◽  
pp. 951-963 ◽  
Author(s):  
Ananda Mustafiz ◽  
Ajit Ghosh ◽  
Amit K. Tripathi ◽  
Charanpreet Kaur ◽  
Akshay K. Ganguly ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenqing Zheng ◽  
Liang Du

Abstract Background The deubiquitinase (DUB) family constitutes a group of proteases that regulate the stability or reverse the ubiquitination of many proteins in the cell. These enzymes participate in cell-cycle regulation, cell division and differentiation, diverse physiological activities such as DNA damage repair, growth and development, and response to stress. However, limited information is available on this family of genes in woody plants. Results In the present study, 88 DUB family genes were identified in the woody model plant Populus trichocarpa, comprising 44 PtrUBP, 3 PtrUCH, 23 PtrOTU, 4 PtrMJD, and 14 PtrJAMM genes with similar domains. According to phylogenetic analysis, the PtrUBP genes were classified into 16 groups, the PtrUCH genes into two, the PtrOTU genes into eight, the PtrMJD genes into two, and the PtrJAMM genes into seven. Members of same subfamily had similar gene structure and motif distribution characteristics. Synteny analysis of the DUB family genes from P. thrchocarpa and four other plant species provided insight into the evolutionary traits of DUB genes. Expression profiles derived from previously published transcriptome data revealed distinct expression patterns of DUB genes in various tissues. On the basis of the results of analysis of promoter cis-regulatory elements, we selected 16 representative PtrUBP genes to treatment with abscisic acid, methyl jasmonate, or salicylic acid applied as a foliar spray. The majority of PtrUBP genes were upregulated in response to the phytohormone treatments, which implied that the genes play potential roles in abiotic stress response in Populus. Conclusions The results of this study broaden our understanding of the DUB family in plants. Analysis of the gene structure, conserved elements, and expression patterns of the DUB family provides a solid foundation for exploration of their specific functions in Populus and to elucidate the potential role of PtrUBP gene in abiotic stress response.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


Sign in / Sign up

Export Citation Format

Share Document