scholarly journals Thalamo-cortical networks in subtypes of migraine with aura patients

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gianluca Coppola ◽  
Antonio Di Renzo ◽  
Emanuele Tinelli ◽  
Barbara Petolicchio ◽  
Vincenzo Parisi ◽  
...  

Abstract Background We searched for differences in resting-state functional connectivity (FC) between brain networks and its relationship with the microstructure of the thalamus between migraine with pure visual auras (MA), and migraine with complex neurological auras (MA+), i.e. with the addition of at least one of sensory or language symptom. Methods 3T MRI data were obtained from 20 patients with MA and 15 with MA + and compared with those from 19 healthy controls (HCs). We collected resting state data among independent component networks. Diffusivity metrics of bilateral thalami were calculated and correlated with resting state ICs-Z-scores. Results As compared to HCs, both patients with MA and MA + disclosed disrupted FC between the default mode network (DMN) and the right dorsal attention system (DAS). The MA + subgroup had lower microstructural metrics than both HCs and the MA subgroup, which correlated negatively with the strength of DMN connectivity. Although the microstructural metrics of MA patients did not differ from those of HCs, these patients lacked the correlation with the strength of DAS connectivity found in HCs. Conclusions The present findings suggest that, as far as MRI profiles are concerned, the two clinical phenotypes of migraine with aura have both common and distinct morpho-functional features of nodes in the thalamo-cortical network.

2017 ◽  
Vol 47 (9) ◽  
pp. 1637-1646 ◽  
Author(s):  
Y. Xu ◽  
W. Qin ◽  
C. Zhuo ◽  
L. Xu ◽  
J. Zhu ◽  
...  

BackgroundAs a disconnection syndrome, schizophrenia has shown impaired resting-state functional connectivity (rsFC) in the orbitofrontal cortex (OFC); however, the OFC is a rather heterogeneous region and the rsFC changes in the OFC subregions remain unknown.MethodA total of 98 schizophrenia patients and 102 healthy controls underwent resting-state functional MRI using a sensitivity-encoded spiral-in imaging sequence (SENSE-SPIRAL) to reduce susceptibility-induced signal loss and distortion. The OFC subregions were defined according to a previous parcellation study that divided the OFC into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. The rsFC was compared using two-way repeated-measures ANOVA.ResultsWhether or not global signal regression, compared with healthy controls, schizophrenia patients consistently exhibited decreased rsFC between the left OFCi and the left middle temporal gyrus and the right middle frontal gyrus (MFG), between the right OFCi and the right MFG and the left inferior frontal gyrus, between the right OFCm and the middle cingulate cortex and the left Rolandic operculum. These rsFC changes still remained significant even after cortical atrophy correction.ConclusionsThese findings suggest a selective functional disconnection of the OFC subregions in schizophrenia, and provide more precise information about the functional disconnections of the OFC in this disorder.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Zhang ◽  
Shouliang Qi ◽  
Shuang Liu ◽  
Xiaoya Liu ◽  
Xinhua Wei ◽  
...  

Abstract Background Subclinical depression (ScD) is a prevalent condition associated with relatively mild depressive states, and it poses a high risk of developing into major depressive disorder (MDD). However, the neural pathology of ScD is still largely unknown. Identifying the spontaneous neural activity involved in ScD may help clarify risk factors for MDD and explore treatment strategies for mild stages of depression. Methods A total of 34 ScD subjects and 40 age-, sex-, and education-matched healthy controls were screened from 1105 college students. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of resting-state fMRI were calculated to reveal neural activity. Strict statistical strategies, including Gaussian random field (GRF), false discovery rate (FDR), and permutation test (PT) with threshold-free cluster enhancement (TFCE), were conducted. Based on the altered ALFF and ReHo, resting-state functional connectivity (RSFC) was further analyzed using a seed-based approach. Results The right precuneus and left middle frontal gyrus (MFG) both showed significantly increased ALFF and ReHo in ScD subjects. Moreover, the left hippocampus and superior frontal gyrus (SFG) showed decreased ALFF and increased ReHo, respectively. In addition, ScD subjects showed increased RSFC between MFG and hippocampus compared to healthy controls, and significant positive correlation was found between the Beck Depression Inventory-II (BDI-II) score and RSFC from MFG to hippocampus in ScD group. Conclusion Spontaneous neural activities in the right precuneus, left MFG, SFG, and hippocampus were altered in ScD subjects. Functional alterations in these dorsolateral prefrontal cortex and default mode network regions are largely related to abnormal emotional processing in ScD, and indicate strong associations with brain impairments in MDD, which provide insight into potential pathophysiology mechanisms of subclinical depression.


2018 ◽  
Vol 1 ◽  
pp. 251581631880482 ◽  
Author(s):  
Marco Lisicki ◽  
Kevin D’Ostilio ◽  
Gianluca Coppola ◽  
Alain Maertens de Noordhout ◽  
Vincenzo Parisi ◽  
...  

Rather than a localized alteration, increased visual reactivity in migraine patients seems to result from a complex interaction between several brain structures, mostly involving the ventral attention network. The hub of this network is the right temporo-parietal junction. In this report, complementing our previous findings, we describe the differences in seed-to-voxel resting-state functional connectivity seeded in the right temporo-parietal junction (right angular gyrus) between migraine patients and healthy controls. Resting-state functional MRIs of episodic migraine without aura patients in the interictal period ( n = 19) and matched healthy controls ( n = 19) were analysed. With the seed placed in the right temporo-parietal junction (right angular gyrus), seed-to-voxel connectivity was compared between groups. Electrophysiological, voxel-based morphometry (both groups) and specific region of interest (ROI)-to-ROI functional connectivity (migraine patients) data have already been published. Migraine patients showed a higher positive interaction between the right temporo-parietal junction and both temporal poles and a higher negative interaction between this same region and bilateral areas of the visual cortex. On the basis of our results, and because of their established properties as multisensory integration hubs, it is likely that the right temporo-parietal junction and both temporal poles are involved in the altered processing of sensory stimulus commonly observed in migraine patients. Therefore, more attention should be paid to these regions for migraine research in the future.


2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


2019 ◽  
Vol 55 ◽  
pp. 10-17 ◽  
Author(s):  
Angela V. Spalatro ◽  
Federico Amianto ◽  
Zirui Huang ◽  
Federico D’Agata ◽  
Mauro Bergui ◽  
...  

AbstractBackground:Despite the great number of resting state functional connectivity studies on Eating Disorders (ED), no biomarkers could be detected yet. Therefore, we here focus on a different measure of resting state activity that is neuronal variability. The objective of this study was to investigate neuronal variability in the resting state of women with ED and to correlate possible differences with clinical and psychopathological indices.Methods:58 women respectively 25 with Anorexia Nervosa (AN), 16 with Bulimia Nervosa (BN) and 17 matched healthy controls (CN) were enrolled for the study. All participants were tested with a battery of psychometric tests and underwent a functional Magnetic Resonance Imaging (fMRI) resting state scanning. We investigated topographical patterns of variability measured by the Standard Deviation (SD) of the Blood-Oxygen-Level-Dependent (BOLD) signal (as a measure of neuronal variability) in the resting-state and their relationship to clinical and psychopathological indices.Results:Neuronal variability was increased in both anorectic and bulimic subjects specifically in the Ventral Attention Network (VAN) compared to healthy controls. No significant differences were found in the other networks. Significant correlations were found between neuronal variability of VAN and various clinical and psychopathological indices.Conclusions:We here show increased neuronal variability of VAN in ED patients. As the VAN is relevant for switching between endogenous and exogenous stimuli, our results showing increased neuronal variability suggest unstable balance between body attention and attention to external world. These results offer new perspective on the neurobiological basis of ED. Clinical and therapeutic implication will be discussed.


2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


2020 ◽  
Vol 14 ◽  
Author(s):  
Diego Szczupak ◽  
Cecil C. Yen ◽  
Cirong Liu ◽  
Xiaoguang Tian ◽  
Roberto Lent ◽  
...  

The corpus callosum, the principal structural avenue for interhemispheric neuronal communication, controls the brain’s lateralization. Developmental malformations of the corpus callosum (CCD) can lead to learning and intellectual disabilities. Currently, there is no clear explanation for these symptoms. Here, we used resting-state functional MRI (rsfMRI) to evaluate the dynamic resting-state functional connectivity (rsFC) in both the cingulate cortex (CG) and the sensory areas (S1, S2, A1) in three marmosets (Callithrix jacchus) with spontaneous CCD. We also performed rsfMRI in 10 CCD human subjects (six hypoplasic and four agenesic). We observed no differences in the strength of rsFC between homotopic CG and sensory areas in both species when comparing them to healthy controls. However, in CCD marmosets, we found lower strength of quasi-periodic patterns (QPP) correlation in the posterior interhemispheric sensory areas. We also found a significant lag of interhemispheric communication in the medial CG, suggesting asynchrony between the two hemispheres. Correspondingly, in human subjects, we found that the CG of acallosal subjects had a higher QPP correlation than controls. In comparison, hypoplasic subjects had a lower QPP correlation and a delay of 1.6 s in the sensory regions. These results show that CCD affects the interhemispheric synchrony of both CG and sensory areas and that, in both species, its impact on cortical communication varies along the CC development gradient. Our study shines a light on how CCD misconnects homotopic regions and opens a line of research to explain the causes of the symptoms exhibited by CCD patients and how to mitigate them.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


2020 ◽  
Vol 84 (1) ◽  
pp. 21-34
Author(s):  
Cassandra Jennings ◽  
Savannah Gosnell ◽  
Kaylah N. Curtis ◽  
Thomas Kosten ◽  
Ramiro Salas

This study aimed to examine habenular resting state functional connectivity (RSFC) abnormalities in tobacco-smoking veterans. The authors explored RSFC in sated smokers (n = 3D 18), overnight deprived smokers (n = 3D 13), and nonsmoker controls (n = 3D 26). Seed-to-voxel analysis was used to explore RSFC in the habenula. Compared to sated smokers, deprived smokers demonstrated higher RSFC between the right habenula and two clusters of voxels: one in the right fusiform gyrus, and one in the left lingual gyrus. To study nicotine withdrawal, the authors used the Shiffman-Jarvik Withdrawal Questionnaire (SJWQ) score as a regressor and found higher RSFC between the right habenula and the left frontal pole in deprived compared to sated smokers. Right habenula RSFC distinguished between sated and deprived smokers and differentiated between sated and deprived smokers when using SJWQ as a regressor, suggesting a habenular role in tobacco withdrawal.


2019 ◽  
Vol 9 (6) ◽  
pp. 1095-1102
Author(s):  
Jian Yang ◽  
Xu Mao ◽  
Ning Liu ◽  
Ning Zhong

Resting-state functional connectivity (FC) changes dynamically and major depressive disorder (MDD) has abnormality in functional connectivity networks (FCNs), but few existing resting-state fMRI study on MDD utilizes the dynamics, especially for identifying depressive individuals from healthy controls. In this paper, we propose a methodological procedure for differential diagnosis of depression, called HN3D, which is based on high-order functional connectivity networks (HFCN). Firstly, HN3D extracts time series by independent component analysis, and partitions them into overlapped short series by sliding time window. Secondly, it constructs a FCN for each time window and concatenates correlation matrices of all FCNs to generate correlation time series. Then, correlation time series are grouped into different clusters and high-order correlations for HFCN is calculated based on their means. Finally, graph based features of HFCNs are extracted and selected for a linear discriminative classifier. Tested on 21 healthy controls and 20 MDD patients, HN3D achieved its best 100% classification accuracy, which is much higher than results based on stationary FCNs. In addition, most discriminative components of HN3D locate in default mode network and visual network, which are consistent with existing stationary-based results on depression. Though HN3D needs to be studied further, it is helpful for the differential diagnosis of depression and might have potentiality in identifying relevant biomarkers.


Sign in / Sign up

Export Citation Format

Share Document