scholarly journals Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Deli Xiao ◽  
Haixiang Qi ◽  
Yan Teng ◽  
Dramou Pierre ◽  
Perpetua Takunda Kutoka ◽  
...  

AbstractWith the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.

2021 ◽  
Vol 14 (6) ◽  
pp. 587
Author(s):  
Zhaoyu Chen ◽  
Qinghua Cui ◽  
Michael Caffrey ◽  
Lijun Rong ◽  
Ruikun Du

Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.


MRS Advances ◽  
2018 ◽  
Vol 3 (40) ◽  
pp. 2359-2364 ◽  
Author(s):  
Chaoxing Zhang ◽  
Jiajia Lin ◽  
Huinan Liu

ABSTRACTMagnesium (Mg)-based biomaterials have attracted increasing attention in biomedical applications, such as orthopaedic, cardiovascular, urological, and neural applications because of the biocompatibility, biodegradability, antibacterial properties, and excellent mechanical properties. However, rapid degradation of Mg is the major concern for many clinical applications. Alloying Mg with other elements and engineering proper surfaces are the two approaches to control the degradation of Mg-based biomaterials. Our lab has investigated several classes of Mg-based biodegradable alloys and various surface treatment methods for medical implant and device applications. This mini-review highlights key research progress on Mg-based biomaterials and suggests future directions for Mg-based biomaterials.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3771 ◽  
Author(s):  
Guo ◽  
Yang ◽  
Dai ◽  
Kong

The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human–machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.


2019 ◽  
Vol 43 (2) ◽  
pp. 299-312 ◽  
Author(s):  
D Fawcett ◽  
J Blanco-Sacristán ◽  
P Benaud

Digital photogrammetry has experienced rapid development regarding the technology involved and its ease of use over the past two decades. We revisit the work of Jim Chandler who in 1999 published a technical communication seeking to familiarise novice users of photogrammetric methods with important theoretical concepts and practical considerations. In doing so, we assess considerations such as camera calibration and the need for photo-control and check points, as they apply to modern software and workflows, in particular for structure-from-motion (SfM) photogrammetry. We also highlight the implications of lightweight drones being the new platform of choice for many photogrammetry-based studies in the geosciences. Finally, we present three examples based on our own work, showing the opportunities that SfM photogrammetry offers at different scales and systems: at the micro-scale for monitoring geomorphological change, and at the meso-scale for hydrological modelling and the reconstruction of vegetation canopies. Our examples showcase developments and applications of photogrammetry which go beyond what was considered feasible 20 years ago and indicate future directions that applications may take. Nevertheless, we demonstrate that, in-line with Chandler’s recommendations, the pre-calibration of consumer-grade cameras, instead of relying entirely on self-calibration by software, can yield palpable benefits in micro-scale applications and that measurements of sufficient control points are still central to generating reproducible, high-accuracy products. With the unprecedented ease of use and wide areas of application, scientists applying photogrammetric methods would do well to remember basic considerations and seek methods for the validation of generated products.


2011 ◽  
Vol 1 (4) ◽  
pp. 649-664 ◽  
Author(s):  
Chi Hyung Seo ◽  
Yan Shi ◽  
Sheng-Wen Huang ◽  
Kang Kim ◽  
Matthew O'Donnell

Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


2020 ◽  
Vol 26 ◽  
Author(s):  
Pengmian Feng ◽  
Lijing Feng ◽  
Chaohui Tang

Background and Purpose: N 6 -methyladenosine (m6A) plays critical roles in a broad set of biological processes. Knowledge about the precise location of m6A site in the transcriptome is vital for deciphering its biological functions. Although experimental techniques have made substantial contributions to identify m6A, they are still labor intensive and time consuming. As good complements to experimental methods, in the past few years, a series of computational approaches have been proposed to identify m6A sites. Methods: In order to facilitate researchers to select appropriate methods for identifying m6A sites, it is necessary to give a comprehensive review and comparison on existing methods. Results: Since researches on m6A in Saccharomyces cerevisiae are relatively clear, in this review, we summarized recent progresses on computational prediction of m6A sites in S. cerevisiae and assessed the performance of existing computational methods. Finally, future directions of computationally identifying m6A sites were presented. Conclusion: Taken together, we anticipate that this review will provide important guides for computational analysis of m 6A modifications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Dilawar Hassan ◽  
Hadi Bakhsh ◽  
Asif M. Khurram ◽  
Shakeel A. Bhutto ◽  
Nida S. Jalbani ◽  
...  

Background: The optical properties of nanomaterials have evolved enormously with the introduction of nanotechnology. The property of materials to absorb and/or emit specific wavelength has turned them into one of the most favourite candidates to be effectively utilized in different sensing applications e.g organic light emission diodes (OLEDs) sensors, gas sensors, biosensors and fluorescent sensors. These materials have been reported as a sensor in the field of tissue and cell imaging, cancer detection and detection of environmental contaminants etc. Fluorescent nanomaterials are heling in rapid and timely detection of various contaminants that greatly impact the quality of life and food, that is exposed to these contaminants. Later, all the contaminants have been investigated to be most perilous entities that momentously affect the life span of the animals and humans who use those foods which have been contaminated. Objective: In this review, we will discuss about various methods and approaches to synthesize the fluorescent nanoparticles and quantum dots (QDs) and their applications in various fields. The application will include the detection of various environmental contaminants and bio-medical applications. We will discuss the possible mode of action of the nanoparticles when used as sensor for the environmental contaminants as well as the surface modification of some fluorescent nanomaterials with anti-body and enzyme for specific detection in animal kingdom. We will also describe some RAMAN based sensors as well as some optical sensing-based nanosensors. Conclusion: Nanotechnology has enabled to play with the size, shape and morphology of materials in the nanoscale. The physical, chemical and optical properties of materials change dramatically when they are reduced to nanoscale. The optical properties can become choosy in terms of emission or absorption of wavelength in the size range and can result in production of very sensitive optical sensor. The results show that the use of fluorescent nanomaterials for the sensing purposes are helping a great deal in the sensing field.


Author(s):  
Oriol Bohigas ◽  
Hans A. Weidenmüller

An overview of the history of random matrix theory (RMT) is provided in this chapter. Starting from its inception, the authors sketch the history of RMT until about 1990, focusing their attention on the first four decades of RMT. Later developments are partially covered. In the past 20 years RMT has experienced rapid development and has expanded into a number of areas of physics and mathematics.


Sign in / Sign up

Export Citation Format

Share Document