scholarly journals Rice with Multilayer Aleurone: A Larger Sink for Multiple Micronutrients

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ronald Yu ◽  
Xiaoba Wu ◽  
Jinxin Liu ◽  
Crispin A. Howitt ◽  
Anthony R. Bird ◽  
...  

AbstractDiet-related noncommunicable diseases impose a heavy burden on human health worldwide. Rice is a good target for diet-related disease prevention strategies because it is widely consumed. Liu et al. (Proc Natl Acad Sci USA 115(44):11327–11332, 2018. https://doi.org/10.1073/pnas.1806304115) demonstrated that increasing the number of cell layers and thickness of putative aleurone in ta2-1 (thick aleurone 2-1) mutant rice enhances simultaneously the content of multiple micronutrients. However, the increases of aleurone-associated nutrients were not proportional to the increases in the aleurone thickness. In this study, first, cytohistological analyses and transmission electron microscopy demonstrated that the multilayer in ta2-1 exhibited aleurone cell structural features. Second, we detected an increase in insoluble fibre and insoluble bound-phenolic compounds, a shift in aleurone-specific neutral non-starch polysaccharide profile, enhancement of phytate and minerals such as iron, zinc, potassium, magnesium, sulphur, and manganese, enrichment of triacylglycerol and phosphatidylcholine but slight reduction in free fatty acid, and an increase in oleic fatty acid composition. These findings support our hypothesis that the expanded aleurone-like layers in ta2-1 maintained some of the distinctive aleurone features and composition. We provide perspectives to achieve even greater filling of this expanded micronutrient sink to provide a means for multiple micronutrient enhancements in rice.

2021 ◽  
Author(s):  
Ronald Yu ◽  
Xiaoba Wu ◽  
Crispin A. Howitt ◽  
Anthony R. Bird ◽  
Chun-Ming Liu ◽  
...  

Abstract Background Diet-related non communicable diseases (NCDs) impose a heavy burden on human health worldwide. Rice is a good target for diet-related disease prevention strategies because it is widely consumed. Liu et al. demonstrated that increasing the number of cell layers and thickness of putative aleurone in ta2-1 (thick aleurone 2-1) mutant rice enhances simultaneously the content of multiple micronutrients. However, the increases of aleurone-associated nutrients were not proportional to the increases in the aleurone thickness. Results In this study, first, cytohistological analyses and transmission electron microscopy demonstrated that the multilayer in ta2-1 exhibited aleurone cell structural features. Second, we detected an increase in insoluble fibre and insoluble bound-phenolic compounds, a shift in aleurone-specific NNSP (neutral non-starch polysaccharide) profile, enhancement of phytate and minerals such as iron, zinc, potassium, magnesium, sulphur, and manganese, enrichment of triacylglycerol and phosphatidylcholine but slight reduction in free fatty acid, and an increase in oleic fatty acid composition. Conclusion These findings support our hypothesis that the expanded aleurone-like layers in ta2-1 maintained the distinctive aleurone features and composition associated with true aleurone. We provide perspectives to achieve even greater filling of this expanded micronutrient sink to alleviate the burden of NCDs.


2015 ◽  
Author(s):  
Ludmila L. Meisner ◽  
Alexey A. Neiman ◽  
Alexander I. Lotkov ◽  
Nikolai N. Koval ◽  
Viktor O. Semin ◽  
...  

1990 ◽  
Vol 110 (4) ◽  
pp. 883-894 ◽  
Author(s):  
R Reichelt ◽  
A Holzenburg ◽  
E L Buhle ◽  
M Jarnik ◽  
A Engel ◽  
...  

Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of distinct NPC components (i.e., "rings," "spoke" complexes, and "plug-spoke" complexes), several fine structural features arranged with octagonal symmetry about a central axis could reproducibly be identified. STEM micrographs of unstained/freeze-dried intact NPCs as well as of their components yielded comparable but less distinct features. Mass determination by STEM revealed the following molecular masses: intact NPC with plug, 124 +/- 11 MD; intact NPC without plug, 112 +/- 11 MD; heavy ring, 32 +/- 5 MD; light ring, 21 +/- 4 MD; plug-spoke complex, 66 +/- 8 MD; and spoke complex, 52 +/- 3 MD. Based on these combined CTEM and STEM data, a three-dimensional model of the NPC exhibiting eightfold centrosymmetry about an axis perpendicular to the plane of the nuclear envelope but asymmetric along this axis is proposed. This structural polarity of the NPC across the nuclear envelope is in accord with its well-documented functional polarity facilitating mediated nucleocytoplasmic exchange of molecules and particles.


Author(s):  
Sasha Z. Prisco ◽  
Lynn M. Hartweck ◽  
Lauren Rose ◽  
Patricia D.A. Lima ◽  
Thenappan Thenappan ◽  
...  

Background: Right ventricular dysfunction (RVD) is the leading cause of death in pulmonary arterial hypertension (PAH), but no RV-specific therapy exists. We showed microtubule-mediated junctophilin-2 dysregulation (MT-JPH2 pathway) causes t-tubule disruption and RVD in rodent PAH, but the druggable regulators of this critical pathway are unknown. GP130 (glycoprotein 130) activation induces cardiomyocyte microtubule remodeling in vitro; however, the effects of GP130 signaling on the MT-JPH2 pathway and RVD resulting from PAH are undefined. Methods: Immunoblots quantified protein abundance, quantitative proteomics defined RV microtubule-interacting proteins (MT-interactome), metabolomics evaluated the RV metabolic signature, and transmission electron microscopy assessed RV cardiomyocyte mitochondrial morphology in control, monocrotaline, and monocrotaline-SC-144 (GP130 antagonist) rats. Echocardiography and pressure-volume loops defined the effects of SC-144 on RV-pulmonary artery coupling in monocrotaline rats (8–16 rats per group). In 73 patients with PAH, the relationship between interleukin-6, a GP130 ligand, and RVD was evaluated. Results: SC-144 decreased GP130 activation, which normalized MT-JPH2 protein expression and t-tubule structure in the monocrotaline RV. Proteomics analysis revealed SC-144 restored RV MT-interactome regulation. Ingenuity pathway analysis of dysregulated MT-interacting proteins identified a link between microtubules and mitochondrial function. Specifically, SC-144 prevented dysregulation of electron transport chain, Krebs cycle, and the fatty acid oxidation pathway proteins. Metabolomics profiling suggested SC-144 reduced glycolytic dependence, glutaminolysis induction, and enhanced fatty acid metabolism. Transmission electron microscopy and immunoblots indicated increased mitochondrial fission in the monocrotaline RV, which SC-144 mitigated. GP130 antagonism reduced RV hypertrophy and fibrosis and augmented RV-pulmonary artery coupling without altering PAH severity. In patients with PAH, higher interleukin-6 levels were associated with more severe RVD (RV fractional area change 23±12% versus 30±10%, P =0.002). Conclusions: GP130 antagonism reduces MT-JPH2 dysregulation, corrects metabolic derangements in the RV, and improves RVD in monocrotaline rats.


2013 ◽  
Vol 19 (5) ◽  
pp. 1159-1169 ◽  
Author(s):  
Carla Silva ◽  
Joao Perdigao ◽  
Elsa Alverca ◽  
António P. Alves de Matos ◽  
Patricia A. Carvalho ◽  
...  

AbstractTuberculosis (TB) is a major health problem. The emergence of multidrug resistant (MDR)Mycobacterium tuberculosis(Mtb) isolates confounds treatment strategies. In Portugal, cases of MDR-TB are reported annually with an increased incidence noted in Lisbon. The majority of these MDR-TB cases are due to closely related mycobacteria known collectively as theLisboafamily and Q1 cluster. Genetic determinants linked to drug resistance have been exhaustively studied resulting in the identification of family and cluster specific mutations. Nevertheless, little is known about other factors involved in development of mycobacteria drug resistance. Here, we complement genetic analysis with the study of morphological and structural features of theLisboafamily and Q1 cluster isolates by using scanning and transmission electron microscopy. This analysis allowed the identification of structural differences, such as cell envelope thickness, between Mtb clinical isolates that are correlated with antibiotic resistance. The infection of human monocyte derived macrophages allowed us to document the relative selective advantage of theLisboafamily isolates over other circulating Mtb isolates.


2020 ◽  
Author(s):  
Chi Zhang ◽  
Stephen Boppart

Abstract The mitochondrion is one of the key organelles for maintaining cellular homeostasis. External environmental stimuli and internal regulatory processes alter the metabolism and functions of mitochondria. To understand these activities of mitochondria, it is critical to probe the key metabolic molecules inside these organelles. In this study, we used label-free chemical imaging modalities including coherent anti-Stokes Raman scattering and multiphoton-excited autofluorescence to study the mitochondrial activities in living cancer cells. We found that hypothermia exposure tends to induce fatty-acid (FA) accumulation in some mitochondria of MIAPaCa-2 cells. Autofluorescence images show that the FA-accumulated mitochondria also have abnormal NADH and FAD metabolism, likely induced by the dysfunction of the electron transport chain. We also found that when the cells were re-warmed to physiological temperature after a period of hypothermia, the FA-accumulated mitochondria changed their structural features, likely caused by the mitophagy process. To the best of our knowledge, this is the first time that FA accumulation in mitochondria was observed in live cells. Our research also demonstrates that multimodal label-free chemical imaging is an attractive tool to discover abnormal functions of mitochondria at the single-organelle level and can be used to quantify the dynamic changes of this organelle under perturbative conditions.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-11
Author(s):  
David Smith ◽  
Sohan Jheeta

Across the world there is an increasingly heavy burden of noncommunicable diseases related to obesity, mental health, and atopic disease. In a previous publication, we followed the developing idea that that these conditions arise as our microbiome loses diversity, but there seems to be no generally applicable way to assess the significance of this loss. Our work revisited the findings of the African studies by Denis Burkitt who reported that the frequency of what he called Western diseases were inversely proportional to the average faecal volumes of affected populations. Although he ascribed this to fibre in the diet, it now seems more likely that the drop in faecal volume with the onset of disease is due to the loss of a fully functioning microbiome. We suggested that the microbiome could be considered to be a single mutualistic microbial community interacting with our body by two complementary sets of semiochemicals, i.e., allomones to feed the microbiota by facilitating the efficient transfer of nutrition through the gut and kairomones to calibrate our immune system by an as yet unknown mechanism. The bioactive compounds, dopamine and serotonin, are known to be present in the gut lumen under the influence of intestinal microbiota and we suggest that these are part of this allomone-like system. In light of this possibility, it is of critical importance to develop a method of quantifying the microbiome effectiveness. Ingestible sensors consist of a miniaturized detector and transmitter packed into a capsule that is swallowed and tracked through the intestine. The aim of this article is to explore the possible development of such ingestible detectors for these or other compounds that can act as a surrogate marker for microbiome effectiveness. We consider that the ability to provide real-time quantitative information on the interaction of the microbiome with different nutrients promises to be a valuable new tool to unravel the mystery of these noncommunicable illnesses, i.e., microbiome-function deficiency diseases.


1991 ◽  
Vol 260 (2) ◽  
pp. L44-L51 ◽  
Author(s):  
K. J. Longmuir ◽  
S. Haynes

This study was undertaken to determine those structural features of phospholipid molecules which influence their enrichment in type II cell lamellar body material. Cultured fetal rabbit lung tissue was labeled with [1-14C]acetate, type II cells were isolated, and extracellular lamellar body and microsomal fractions were prepared. Radiolabeled molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine were analyzed by high-performance liquid chromatography (HPLC), followed by silver nitrate thin-layer chromatography of HPLC peak fractions that overlapped. Compared with microsomes, lamellar body PC was selectively enriched with molecular species containing 14- and 16-carbon fatty acids and depleted of species containing 18-carbon fatty acids. Palmitoleic acid and an ether linkage positively influenced the enrichment of PC molecular species in the lamellar body material, but these structural features were secondary to the predominant influence of fatty acid chain length. In vivo, lung tissue normally contains low levels of palmitoleic acid; hence most unsaturated fatty acids are 18-carbons or longer. A cellular lipid-sorting mechanism that selects PCs by recognition of 14- and 16-carbon fatty acid chains (and not by recognition of fatty acid saturation) should serve to enrich the resulting pulmonary surfactant with disaturated molecular species of PC.


1985 ◽  
Vol 62 ◽  
Author(s):  
Tung Hsu ◽  
S. R. Nutt

ABSTRACTSurfaces of commercially grown edge-defined film-fed growth sapphire (EFG α-Al2O3) were studied in the electron microscope using both reflection electron microscopy (REM) and conventional transmission electron microscopy (TEM). The as-grown sapphire surface, ostensibly {1120}, was characterized by “rooftop” structures which were often locally periodic. These rooftop structures consisted of alternating {1120} facets and additional facets inclined a few degrees. The crystallography of the surface facets was analyzed using REM imaging of bulk specimens, and trace analysis of back-thinned plan section TEM specimens. Surface roughness was measured by stylus profilometry. and these measurements were compared to the electron microscopy observations. Fine structural features parallel to <0110> directions were also observed in both REM and TEM experiments, and these were attributed to surface steps of atomic scales.


2014 ◽  
Vol 29 (S1) ◽  
pp. S47-S53 ◽  
Author(s):  
Marco Sommariva ◽  
Milen Gateshki ◽  
Jan-André Gertenbach ◽  
Joerg Bolze ◽  
Uwe König ◽  
...  

X-ray diffraction and scattering on a single multipurpose X-ray platform have been used to probe the structure, composition, and thermal behavior of TiO2 nanoparticles ranging in size from 1 to 10 nm. Ambient and non-ambient Bragg diffraction, small-angle X-ray scattering (SAXS), as well as total scattering and pair-distribution function (PDF) analysis are combined to obtain a comprehensive picture of the samples. At these ultrasmall particle-size dimensions, SAXS and PDF prove powerful in distinguishing the salient features of the materials, in particular the size distribution of the primary particles (SAXS) and the identification of the TiO2 polymorphs (PDF). Structural features determined by X-ray scattering techniques are corroborated by high-resolution transmission electron microscopy. The elemental make-up of the materials has been measured using X-ray fluorescence spectrometry and energy-dispersive X-ray analysis.


Sign in / Sign up

Export Citation Format

Share Document