scholarly journals Genome-Wide Analysis of Dynamin Gene Family in cassava (Manihot esculenta Crantz) and Transcriptional Regulation of Family Members ARC5 in Hormonal Treatments

2019 ◽  
Vol 20 (20) ◽  
pp. 5094
Author(s):  
Cao ◽  
Liu ◽  
Guo ◽  
Chen ◽  
Li ◽  
...  

The Dynamin gene family play a significance role in many physiological processes, especially ARC5 (Accumulation and replication of chloroplasts 5) in the process of plastid division. We performed a genome-wide analysis of the cassava Dynamin family based on the published cassava genome sequence and identified ARC5. 23 cassava Dynamins (MeDynamins) were identified and renamed. 23 MeDynamins were further divided into five major groups based on their structural and phylogenetic characteristics. The segmental duplication events have a significant impact on the expansion of MeDynamins. ARC5 expression analysis showed that there were differences between leaves and roots of cassava at different developmental stages. The tissue-specific expression analysis of the MeDynamins showed that most of MeDynamins were expressed in stem apical meristem and embryogenesis, whereas ARC5 was mainly expressed in leaves. The processing of IAA (Indole-3-acetic Acid) and MeJA (Methyl Jasmonate) verified the prediction results of cis-elements, and ACR5 was closely related to plant growth and positively correlated. It also indicated that high concentrations of MeJA treatment caused the cassava defense mechanism to function in advance. In conclusion, these findings provide basic insights for functional validation of the ARC5 genes in exogenous hormonal treatments.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2021 ◽  
Author(s):  
Hongying Yu ◽  
Yaying Ma ◽  
Yijing Lu ◽  
Jingjing Yue ◽  
Ray Ming

Abstract DNA-binding with one finger (Dof) transcription factors are plant-specific transcription factors involved in numerous pathways of plant development, especially in respond to abiotic stresses. Although genome-wide analysis of this gene family has been performed in many species, Dof genes in spinach have not been thoroughly analyzed. We performed a genome-wide analysis and characterization of Dof gene family in spinach. Twenty two Dof genes were identified and classified into four groups with nine subgroups, which was further corroborated by gene structure and motif analyses. Ka/Ks analysis revealed that SoDofs were subjected to purify selection. Using Cis-acting elements analysis, SoDofs were involved in plant growth and development, plant hormones and stress responses. Expression profiling demonstrated that SoDofs expressed in leaf and inflorescence, and responded to cold, heat, and drought stresses. SoDof22 expressed the highest level in male flowers and under cold stress. These results provided a genome-wide analysis of SoDof genes, their gender- and tissue-specific expression, and response to abiotic stresses. The knowledge and resources gained from these analyses will benefit spinach improvement.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1061
Author(s):  
Xing Huang ◽  
Xuehui Bai ◽  
Tieying Guo ◽  
Zhouli Xie ◽  
Margit Laimer ◽  
...  

Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongying Yu ◽  
Yaying Ma ◽  
Yijing Lu ◽  
Jingjing Yue ◽  
Ray Ming

AbstractDNA-binding with one finger (Dof) are plant-specific transcription factors involved in numerous pathways of plant development, such as abiotic stresses responses. Although genome-wide analysis of Dof genes has been performed in many species, but these genes in spinach have not been analyzed yet. We performed a genome-wide analysis and characterization of Dof gene family in spinach (Spinacia oleracea L.). Twenty-two Dof genes were identified and classified into four groups with nine subgroups, which was further corroborated by gene structure and motif analyses. Ka/Ks analysis revealed that SoDofs were subjected to purifying selection. Using cis-acting elements analysis, SoDofs were involved in plant growth and development, plant hormones, and stress responses. Expression profiling demonstrated that SoDofs expressed in leaf and inflorescence, and responded to cold, heat, and drought stresses. SoDof22 expressed the highest level in male flowers and under cold stress. These results provided a genome-wide analysis of SoDof genes, their gender- and tissue-specific expression, and response to abiotic stresses. The knowledge and resources gained from these analyses will benefit spinach improvement.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1661
Author(s):  
Hongsheng Zhou ◽  
Wen Huang ◽  
Shufen Luo ◽  
Huali Hu ◽  
Yingtong Zhang ◽  
...  

Vacuolar H+-ATPases (V-ATPase) are multi-subunit complexes that function as ATP hydrolysis-driven proton pumps. They play pivotal roles in physiological processes, such as development, metabolism, stress, and growth. However, there have been very few studies on the characterisation of V-ATPase (VHA) genes in Rosaceae species. Therefore, in the present study, we performed a genome-wide analysis and identified VHA gene family members in five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume). A total of 159 VHA genes were identified, and were classified into 13 subfamilies according to the phylogenetic analysis. The structure of VHA proteins revealed high similarity among different VHA genes within the same subgroup. Gene duplication event analysis revealed that whole-genome duplications represented the major pathway for expansion of the Pyrus bretschneideri VHA genes (PbrVHA genes). The tissue-specific expression analysis of the pear showed that 36 PbrVHA genes were expressed in major tissues. Seven PbrVHA genes were significantly downregulated when the pollen tube growth stopped. Moreover, many PbrVHA genes were differentially expressed during fruit development and storage, suggesting that VHA genes play specific roles in development and senescence. The present study provides fundamental information for further elucidating the potential roles of VHA genes during development and senescence.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shulin Zhang ◽  
Zailong Tian ◽  
Haipeng Li ◽  
Yutao Guo ◽  
Yanqi Zhang ◽  
...  

Abstract Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.


Genome ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 643-656 ◽  
Author(s):  
Yong Zhou ◽  
Junjie Tao ◽  
Golam Jalal Ahammed ◽  
Jingwen Li ◽  
Youxin Yang

The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.


Sign in / Sign up

Export Citation Format

Share Document