scholarly journals Identification and evolution analysis of the JAZ gene family in maize

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Han ◽  
Dawn Luthe

Abstract Background Jasmonates (JAs) are important for plants to coordinate growth, reproduction, and defense responses. In JA signaling, jasmonate ZIM-domain (JAZ) proteins serve as master regulators at the initial stage of herbivores attacks. Although discovered in many plant species, little in-depth characterization of JAZ gene expression has been reported in the agronomically important crop, maize (Zea mays L.). Results In this study 16 JAZ genes from the maize genome were identified and classified. Phylogenetic analyses were performed from maize, rice, sorghum, Brachypodium, and Arabidopsis using deduced protein sequences, total six clades were proposed and conservation was observed in each group, such as similar gene exon/intron structures. Synteny analysis across four monocots indicated these JAZ gene families had a common ancestor, and duplication events in maize genome may drive the expansion of JAZ gene family, including genome-wide duplication (GWD), transposon, and/or tandem duplication. Strong purifying selection acted on all JAZ genes except those in group 4, which were under neutral selection. Further, we cloned three paralogous JAZ gene pairs from two maize inbreds differing in JA levels and insect resistance, and gene polymorphisms were observed between two inbreds. Conclusions Here we analyzed the composition and evolution of JAZ genes in maize with three other monocot plants. Extensive phylogenetic and synteny analysis revealed the expansion and selection fate of maize JAZ. This is the first study comparing the difference between two inbreds, and we propose genotype-specific JAZ gene expression might be present in maize plants. Since genetic redundancy in JAZ gene family hampers our understanding of their role in response to specific elicitors, we hope this research could be pertinent to elucidating the defensive responses in plants.

2021 ◽  
Author(s):  
Yang Han ◽  
Dawn Luthe

Abstract Background: Jasmonates (JAs) are important for plants to coordinate growth, reproduction, and defense responses. In JA signaling, jasmonate ZIM-domain (JAZ) proteins serve as master regulators at the initial stage of herbivores attacks. Although discovered in many plant species, little in-depth characterization of JAZ gene expression has been reported in the agronomically important crop, maize (Zea mays L.). Results: In this study 16 JAZ genes from the maize genome were identified and classified. Phylogenetic analyses were performed from maize, rice, sorghum, Brachypodium, and Arabidopsis using deduced protein sequences, total six clades were proposed and conservation was observed in each group, such as similar gene exon/intron structures. Synteny analysis across four monocots indicated these JAZ gene families had a common ancestor, and duplication events in maize genome may drive the expansion of JAZ gene family, including genome-wide duplication (GWD), transposon, and/or tandem duplication. Strong purifying selection acted on all JAZ genes except those in group 4, which were under neutral selection. Further, we cloned three paralogous JAZ gene pairs from two maize inbreds differing in JA levels and insect resistance, and gene polymorphisms were observed between two inbreds.Conclusions: Here we analyzed the composition and evolution of JAZ genes in maize with three other monocot plants. Extensive phylogenetic and synteny analysis revealed the expansion and selection fate of maize JAZ. This is the first study comparing the difference between two inbreds, and we propose genotype-specific JAZ gene expression might be present in maize plants. Since genetic redundancy in JAZ gene family hampers our understanding of their role in response to specific elicitors, we hope this research could be pertinent to elucidating the defensive responses in plants.


2021 ◽  
Vol 22 (23) ◽  
pp. 13045
Author(s):  
Yin Tang ◽  
Jingfei Guo ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
...  

WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunying Cheng ◽  
Jinlin Chen ◽  
Irum Mukhtar ◽  
Jianming Chen

Nuclear receptors (NRs), a series of key transcription factors that are mostly activated by endogenous ligands or environmental xenobiotics, are reportedly good phylogenetic markers of animal genome evolution. As the early diverging class of bilaterians, however, a comprehensive view of the NR family in a marine free-living flatworm Macrostomum lignano and comparative information in flatworms are still lacking, which is of significance to address the evolutionary diversification of the NR family and imply the adaptive evolution in the early diverging Bilateria. Herein, a total of 51, 26, and 23 putative NR genes were identified in M. lignano, Sparganum proliferum, and Clonorchis sinensis, respectively, which were classified into eight subfamilies, implying an extensive expansion of the NR family in M. lignano. It is presumed that the extensive expansion was mainly attributed to the M. lignano-specific hidden polyploidy, segmental, and tandem duplication events. The duplicated NR pairs in M. lignano and the NR orthologs in flatworms all experienced the purifying selection. Phylogenetic analyses indicated the presence of NR3-like genes in M. lignano, which is first reported in flatworms. Intron loss and reduced intron size were mainly contributed to the structural divergence of NR genes in flatworms. The combined data provide indispensable information for a better understanding of the complexity and the adaptive evolution of the NR gene family in metazoans.


2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abdullah ◽  
Sahar Faraji ◽  
Parviz Heidari ◽  
Péter Poczai

The benzyl alcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase, and deacetylvindoline 4-O-acetyltransferase (BAHD) enzymes play a critical role in regulating plant metabolites and affecting cell stability. In the present study, members of the BAHD gene family were recognized in the genome of Theobroma cacao and characterized using various bioinformatics tools. We found 27 non-redundant putative tcBAHD genes in cacao for the first time. Our findings indicate that tcBAHD genes are diverse based on sequence structure, physiochemical properties, and function. When analyzed with BAHDs of Gossypium raimondii and Corchorus capsularis clustered into four main groups. According to phylogenetic analysis, BAHD genes probably evolved drastically after their divergence. The divergence time of duplication events with purifying selection pressure was predicted to range from 1.82 to 15.50 MYA. Pocket analysis revealed that serine amino acid is more common in the binding site than other residuals, reflecting its key role in regulating the activity of tcBAHDs. Furthermore, cis-acting elements related to the responsiveness of stress and hormone, particularly ABA and MeJA, were frequently observed in the promoter region of tcBAHD genes. RNA-seq analysis further illustrated that tcBAHD13 and tcBAHD26 are involved in response to Phytophthora megakarya fungi. In conclusion, it is likely that evolutionary processes, such as duplication events, have caused high diversity in the structure and function of tcBAHD genes.


2021 ◽  
Vol 22 (23) ◽  
pp. 12649
Author(s):  
Zhen Peng ◽  
Xuran Jiang ◽  
Zhenzhen Wang ◽  
Xiaoyang Wang ◽  
Hongge Li ◽  
...  

Salinity is a critical abiotic factor that significantly reduces agricultural production. Cotton is an important fiber crop and a pioneer on saline soil, hence genetic architecture that underpins salt tolerance should be thoroughly investigated. The Raf-like kinase B-subfamily (RAF) genes were discovered to regulate the salt stress response in cotton plants. However, understanding the RAFs in cotton, such as Enhanced Disease Resistance 1 and Constitutive Triple Response 1 kinase, remains a mystery. This study obtained 29, 28, 56, and 54 RAF genes from G. arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. The RAF gene family described allopolyploidy and hybridization events in allotetraploid cotton evolutionary connections. Ka/Ks analysis advocates that cotton evolution was subjected to an intense purifying selection of the RAF gene family. Interestingly, integrated analysis of synteny and gene collinearity suggested dispersed and segmental duplication events involved in the extension of RAFs in cotton. Transcriptome studies, functional validation, and virus-induced gene silencing on salt treatments revealed that GhRAF42 is engaged in salt tolerance in upland cotton. This research might lead to a better understanding of the role of RAFs in plants and the identification of suitable candidate salt-tolerant genes for cotton breeding.


2021 ◽  
Author(s):  
Qingqing Xie ◽  
Qi Yu ◽  
Timothy O. Jobe ◽  
Allis Pham ◽  
Chennan Ge ◽  
...  

AbstractArsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms. We hypothesized that this may be due to the extensive genetic redundancy present in plant genomes. To overcome this limitation, we pursued a forward genetics screen for arsenite tolerance using a randomized library of plants expressing >2,000 artificial microRNAs (amiRNAs). This library was designed to knock-down diverse combinations of homologous gene family members within sub-clades of transcription factor and transporter gene families. We identified six transformant lines showing an altered response to arsenite in root growth assays. Further characterization of an amiRNA line targeting closely homologous CBF and ERF transcription factors show that the CBF1,2 and 3 transcription factors negatively regulate arsenite sensitivity. Furthermore, the ERF34 and ERF35 transcription factors are required for cadmium resistance. Generation of CRISPR lines, higher-order T-DNA mutants, and gene expression analyses, further support our findings. These ERF transcription factors differentially regulate arsenite sensitivity and cadmium tolerance.


2016 ◽  
Author(s):  
Anil S. Thanki ◽  
Nicola Soranzo ◽  
Javier Herrero ◽  
Wilfried Haerty ◽  
Robert P. Davey

AbstractBackgroundPhylogenetic information inferred from the study of homologous genes helps us to understand the evolution of genes and gene families, including the identification of ancestral gene duplication events as well as regions under positive or purifying selection within lineages. Gene family and orthogroup characterisation enables the identification of syntenic blocks, which can then be visualised with various tools. Unfortunately, currently available tools display only an overview of syntenic regions as a whole, limited to the gene level, and none provide further details about structural changes within genes, such as the conservation of ancestral exon boundaries amongst multiple genomes.FindingsWe present Aequatus, a standalone web-based tool that provides an in-depth view of gene structure across gene families, with various options to render and filter visualisations. It relies on pre-calculated alignment and gene feature information typically held in, but not limited to, the Ensembl Compara and Core databases. We also offer Aequatus.js, a reusable JavaScript module that fulfils the visualisation aspects of Aequatus, available within the Galaxy web platform as a visualisation plugin, which can be used to visualise gene trees generated by the GeneSeqToFamily workflow.AvailabilityAequatus is an open-source tool freely available to download under the MIT license at https://github.com/TGAC/Aequatus. A demo server is available at http://aequatus.earlham.ac.uk/. A publicly available instance of the GeneSeqToFamily workflow to generate gene tree information and visualise it using Aequatus is available on the Galaxy EU server at https://[email protected] and [email protected]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Jia ◽  
Cunyao Yan ◽  
Jing Zhang ◽  
Yunxia Cheng ◽  
Wenwen Li ◽  
...  

AbstractJAZ is a plant-specific protein family involved in the regulation of plant development, abiotic stresses, and responses to phytohormone treatments. In this study, we carried out a bioinformatics analysis of JAZ genes in turnip by determining the phylogenetic relationship, chromosomal location, gene structure and expression profiles analysis under stresses. The 36 JAZ genes were identified and classified into four subfamilies (ZML, JAZ, PPD and TIFY). The JAZ genes were located on 10 chromosomes. Two gene pairs were involved in tandem duplication events. We identified 44 collinear JAZ gene pairs in the turnip genome. Analysis of the Ka/Ks ratios indicated that the paralogs of the BrrJAZ family principally underwent purifying selection. Expression analysis suggested JAZ genes may be involved in the formation of turnip tuberous root, and they also participated in the response to ABA, SA, MeJA, salt stress and low-temperature stress. The results of this study provided valuable information for further exploration of the JAZ gene family in turnip.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph M. Bliss ◽  
George A. Tollefson ◽  
Abigail Cuevas ◽  
Sarah J. Longley ◽  
Matthew N. Neale ◽  
...  

ABSTRACT Candida parapsilosis has emerged as a frequent cause of invasive candidiasis with increasing evidence of unique biological features relative to C. albicans. As it adapts to conditions within a mammalian host, rapid changes in gene expression are necessary to facilitate colonization and persistence in this environment. Adhesion of the organism to biological surfaces is a key first step in this process and is the focus of this study. Building on previous observations showing the importance of a member of the ALS gene family in C. parapsilosis adhesion, three clinical isolates were cultured under two conditions that mimic the mammalian host and promote adhesion, incubation at 37°C in tissue culture medium 199 or in human plasma. Transcriptional profiles using RNA-seq were obtained in these adhesion-inducing conditions and compared to profiles following growth in yeast media that suppress adhesion to identify gene expression profiles associated with adhesion. Overall gene expression profiles among the three strains were similar in both adhesion-inducing conditions and distinct from adhesion-suppressing conditions. Pairwise analysis among the three growth conditions identified 133 genes that were differentially expressed at a cutoff of ±4-fold, with the most upregulated genes significantly enriched in iron acquisition and transmembrane transport, while the most downregulated genes were enriched in oxidation-reduction processes. Gene family enrichment analysis identified gene families with diverse functions that may have an important role in this important step for colonization and disease. IMPORTANCE Invasive Candida infections are frequent complications of the immunocompromised and are associated with substantive morbidity and mortality. Although C. albicans is the best-studied species, emerging infections by non-albicans Candida species have led to increased efforts to understand aspects of their pathogenesis that are unique from C. albicans. C. parapsilosis is a frequent cause of invasive infections, particularly among premature infants. Recent efforts have identified important virulence mechanisms that have features distinct from C. albicans. C. parapsilosis can exist outside a host environment and therefore requires rapid modifications when it encounters a mammalian host to prevent its clearance. An important first step in the process is adhesion to host surfaces. This work takes a global, nonbiased approach to investigate broad changes in gene expression that accompany efficient adhesion. As such, biological pathways and individual protein targets are identified that may be amenable to manipulation to reduce colonization and disease from this organism.


Sign in / Sign up

Export Citation Format

Share Document