scholarly journals Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yasuhiro Sato ◽  
Rie Shimizu-Inatsugi ◽  
Misako Yamazaki ◽  
Kentaro K. Shimizu ◽  
Atsushi J. Nagano
2018 ◽  
Author(s):  
Yasuhiro Sato ◽  
Rie Shimizu-Inatsugi ◽  
Misako Yamazaki ◽  
Kentaro K. Shimizu ◽  
Atsushi J. Nagano

AbstractBackground: Genetic variation in plants alters insect abundance and community structure in the field; however, little is known about the importance of a single gene among diverse plant genotypes. In this context, Arabidopsis trichomes provide an excellent system to discern the roles of natural variation and a key gene, GLABRA1, in shaping insect communities. In this study, we transplanted two independent glabrous mutants (gl1-1 and gl1-2) and 17 natural accessions of Arabidopsis thaliana to two localities in Switzerland and Japan.Results: Fifteen insect species inhabited plant accessions, with 10–30% broad-sense heritability of community indices being detected, such as species richness and diversity. The total abundance of leaf-chewing herbivores was negatively correlated with trichome density at both the field sites, while glucosinolates had variable effects on leaf chewers between the two sites. Interestingly, there was a parallel tendency for the abundance of leaf chewers to be higher on gl1-1 and gl1-2 than for their different parental accessions, Ler-1 and Col-0, respectively. Furthermore, the loss of function in the GLABRA1 gene significantly decreased the resistance of plants to the two predominant chewers, flea beetles and turnip sawflies.Conclusions: Overall, our results indicate that insect community composition on A. thaliana is heritable across two distant field sites, with GLABRA1 playing a key role in altering the abundance of leaf-chewing herbivores. Given that such a trichome variation is widely observed in Brassicaceae plants, the present study exemplifies the community-wide impact of a single plant gene on crucifer-feeding insects in the field.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 909-918 ◽  
Author(s):  
J.D. Faure ◽  
P. Vittorioso ◽  
V. Santoni ◽  
V. Fraisier ◽  
E. Prinsen ◽  
...  

The control of cell division by growth regulators is critical to proper plant development. The isolation of single-gene mutants altered in the response to plant hormones should permit the identification of essential genes controlling the growth and development of plants. We have isolated mutants pasticcino belonging to 3 complementation groups (pas1, pas2, pas3) in the progeny of independent ethyl methane sulfonate and T-DNA mutagenized Arabidopsis thaliana plants. The screen was performed in the presence or absence of cytokinin. The mutants isolated were those that showed a significant hypertrophy of their apical parts when grown on cytokinin-containing medium. The pas mutants have altered embryo, leaf and root development. They display uncoordinated cell divisions which are enhanced by cytokinin. Physiological and biochemical analyses show that cytokinins are probably involved in pas phenotypes. The PAS genes have been mapped respectively to chromosomes 3, 5 and 1 and represent new plant genes involved in the control of cell division and plant development.


2021 ◽  
Author(s):  
Maryam Rahmati Ishka ◽  
Elizabeth Brown ◽  
Alexa Rosenberg ◽  
Shawn Romanowsky ◽  
James A Davis ◽  
...  

Abstract Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, PR1 (Pathogenesis-related 1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11860
Author(s):  
Anum Zeb Abbasi ◽  
Misbah Bilal ◽  
Ghazal Khurshid ◽  
Charilaos Yiotis ◽  
Iftikhar Zeb ◽  
...  

Background Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. Methods Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. Results The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. Conclusion This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.


2018 ◽  
Vol 25 (14) ◽  
pp. 13426-13438 ◽  
Author(s):  
Angelina Sanderson Bellamy ◽  
Ola Svensson ◽  
Paul J. van den Brink ◽  
Jonas Gunnarsson ◽  
Michael Tedengren

2008 ◽  
Vol 43 (2) ◽  
pp. 501-512 ◽  
Author(s):  
F. Oliver Gathmann ◽  
Lisa L. Manne ◽  
D. Dudley Williams

Sign in / Sign up

Export Citation Format

Share Document