scholarly journals Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xu ◽  
Jia-hui Lu ◽  
Jia-de Zhang ◽  
Deng-kui Liu ◽  
Yue Wang ◽  
...  

Abstract Background Soil salinization extensively hampers the growth, yield, and quality of crops worldwide. The most effective strategies to counter this problem are a) development of crop cultivars with high salt tolerance and b) the plantation of salt-tolerant crops. Glycyrrhiza inflata, a traditional Chinese medicinal and primitive plant with salt tolerance and economic value, is among the most promising crops for improving saline-alkali wasteland. However, the underlying molecular mechanisms for the adaptive response of G. inflata to salinity stress remain largely unknown. Result G. inflata retained a high concentration of Na+ in roots and maintained the absorption of K+, Ca2+, and Mg2+ under 150 mM NaCl induced salt stress. Transcriptomic analysis of G. inflata roots at different time points of salt stress (0 min, 30 min, and 24 h) was performed, which resulted in 70.77 Gb of clean data. Compared with the control, we detected 2645 and 574 differentially expressed genes (DEGs) at 30 min and 24 h post-salt-stress induction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that G. inflata response to salt stress post 30 min and 24 h was remarkably distinct. Genes that were differentially expressed at 30 min post-salt stress induction were enriched in signal transduction, secondary metabolite synthesis, and ion transport. However, genes that were differentially expressed at 24 h post-salt-stress induction were enriched in phenylpropane biosynthesis and metabolism, fatty acid metabolism, glycerol metabolism, hormone signal transduction, wax, cutin, and cork biosynthesis. Besides, a total of 334 transcription factors (TFs) were altered in response to 30 min and 24 h of salt stress. Most of these TFs belonged to the MYB, WRKY, AP2-EREBP, C2H2, bHLH, bZIP, and NAC families. Conclusion For the first time, this study elucidated the salt tolerance in G. inflata at the molecular level, including the activation of signaling pathways and genes that regulate the absorption and distribution of ions and root growth in G. inflata under salt stress conditions. These findings enhanced our understanding of the G. inflata salt tolerance and provided a theoretical basis for cultivating salt-tolerant crop varieties.

2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K + /Na + ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na + transport from the roots to the leaves, increasing K + absorption in the roots and reducing K + secretion from the leaves to maintain a significantly greater K + /Na + ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots were identified as a significant time point and tissue type. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2021 ◽  
Author(s):  
Chengjian Jiang ◽  
Xinghua Cai ◽  
Huijie Sun ◽  
Huashan Bai ◽  
Yanyi Chen ◽  
...  

A novel strain named Meyerozyma guilliermondii GXDK6 was provided in this work, which was confirmed to survive independently under high salt stress (12% NaCl) or co-stress condition of strong acid (pH 3.0) and high salts (10% NaCl) without sterilization. Its survival mechanism under high salt stress was revealed by integrated omics for the first time. Whole-genome analysis showed that 14 genes (e.g., GPD1 and FPS1) of GXDK6 relevant to salt tolerance were annotated and known to belong to various salt-resistant mechanisms (e.g., regulation of cell signal transduction and glycerol metabolism controls). Transcriptome sequencing results indicated that 1220 genes (accounting for 10.15%) of GXDK6 were differentially transcribed (p < 0.05) when GXDK6 growth was under 10% stress for 16 h, including important novel salt-tolerant-related genes (e.g., RTM1 and YHB1). Proteomics analysis demonstrated that 1005 proteins (accounting for 27.26%) of GXDK6 were differentially expressed (p < 0.05) when GXDK6 was stressed by 10% NaCl. Some of the differentially expressed proteins were defined as the novel salt-tolerant related proteins (e.g., sugar transporter STL1 and NADPH-dependent methylglyoxal reductase). Metabolomic analysis results showed that 63 types of metabolites (e.g., D-mannose, glycerol and inositol phosphate) of GXDK6 were up- or downregulated when stressed by 10% NaCl. Among them, D-mannose is one of the important metabolites that could enhance the salt-tolerance survival of GXDK6.


2019 ◽  
Vol 20 (23) ◽  
pp. 5910 ◽  
Author(s):  
Gui Geng ◽  
Chunhua Lv ◽  
Piergiorgio Stevanato ◽  
Renren Li ◽  
Hui Liu ◽  
...  

Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12492
Author(s):  
Xun Liu ◽  
Xinxia Yang ◽  
Bin Zhang

Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing-Rui Sun ◽  
Chong-Yun Fu ◽  
Zhi-Lan Fan ◽  
Yu Chen ◽  
Wen-Feng Chen ◽  
...  

Abstract Background Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. Results To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. Conclusion OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Huixian Xing ◽  
Wenguan Zeng ◽  
Jialing Xu ◽  
Lili Mao ◽  
...  

Abstract Background Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. Results In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. Conclusions These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 458 ◽  
Author(s):  
Rong Wang ◽  
Xi Wang ◽  
Kuan Liu ◽  
Xue-Jie Zhang ◽  
Luo-Yan Zhang ◽  
...  

As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.


2021 ◽  
Vol 23 (1) ◽  
pp. 138
Author(s):  
Longjie Ni ◽  
Zhiquan Wang ◽  
Xiangdong Liu ◽  
Shuting Wu ◽  
Jianfeng Hua ◽  
...  

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Sign in / Sign up

Export Citation Format

Share Document