scholarly journals Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing-Rui Sun ◽  
Chong-Yun Fu ◽  
Zhi-Lan Fan ◽  
Yu Chen ◽  
Wen-Feng Chen ◽  
...  

Abstract Background Salt stress is an important factor that limits rice yield. We identified a novel, strongly salt tolerant rice landrace called Changmaogu (CMG) collected from a coastal beach of Zhanjiang, Guangdong Province, China. The salt tolerance of CMG was much better than that of the international recognized salt tolerant rice cultivar Pokkali in the germination and seedling stages. Results To understand the molecular basis of salt tolerance in CMG, we performed BSA-seq for two extreme bulks derived from the cross between CMG and a cultivar sensitive to salt, Zhefu802. Transcriptomic sequencing was conducted for CMG at the germination and young seedling stages. Six candidate regions for salt tolerance were mapped on Chromosome 1 by BSA-seq using the extreme populations. Based on the polymorphisms identified between both parents, we detected 32 genes containing nonsynonymous coding single nucleotide polymorphisms (SNPs) and frameshift mutations in the open reading frame (ORF) regions. With transcriptomic sequencing, we detected a large number of differentially expressed genes (DEGs) at the germination and seedling stages under salt stress. KEGG analysis indicated two of 69 DEGs shared at the germination and seedling stages were significantly enriched in the pathway of carotenoid biosynthesis. Of the 169 overlapping DEGs among three sample points at the seedling stage, 13 and six DEGs were clustered into the pathways of ABA signal transduction and carotenoid biosynthesis, respectively. Of the 32 genes carrying sequence variation, only OsPP2C8 (Os01g0656200) was differentially expressed in the young seedling stage under salt stress and also showed sequence polymorphism in the ORFs between CMG and Zhefu802. Conclusion OsPP2C8 was identified as the target candidate gene for salinity tolerance in the seedling stage. This provides an important genetic resource for the breeding of novel salt tolerant rice cultivars.

2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


2020 ◽  
Author(s):  
Qian Ma ◽  
Huajian Zhou ◽  
Xinying Sui ◽  
Chunxue Su ◽  
Yanchong Yu ◽  
...  

Abstract Background: Wheat (Triticum aestivum L.) is a staple crop in the world, but is only moderately salt tolerant. However, salt stress affects one-fifth of irrigated agricultural land in the world, it is of great importance to cultivate salt-tolerant varieties to improve the global wheat production. Results: In this study, over 90,000 wheat seeds of cultivar ‘Luyuan502’ were mutated by EMS, and 2000 salt-tolerant lines were harvested from salinized field. By analysis of ethylene sensitivity, salt related physiological factors, and preliminary crop yield, 12 salt-tolerant wheat lines with high production were selected among the crop plants. Transcriptome analysis indicated that a large number of the transcripts levels were significantly altered, mainly based on antenna proteins involved in photosynthesis, biosynthesis of secondary metabolites, cyanoamino acid metabolism, carotenoid biosynthesis, thiamine metabolism, and cutin, suberine and wax biosynthesis pathways including CABs, PERs/PODs, BGLUs, CYP707s, and ZEPs. qRT-PCR analysis revealed that the expressions of salt-related genes in the wheat lines were mostly higher than the wild type, and salt stress can significantly increase the expression levels of the ethylene-related genes in the wheat lines. Based on transcriptomic data, nine novel wheat ERFs were identified and analyzed, and it is suggested that they may play important roles in mediation of ethylene response and salt tolerance.Conclusion: Salt-tolerant wheat mutant lines with ethylene insensitivity were obtained from screen of a wheat EMS-mutagenized pool. Transcriptome data showed that the mutant plants exhibit significant alterations in the antenna proteins involved in various biological processes. Expression analysis suggests that ERFs may mediate ethylene response and salt tolerance of the wheat lines.


2019 ◽  
Vol 20 (23) ◽  
pp. 5910 ◽  
Author(s):  
Gui Geng ◽  
Chunhua Lv ◽  
Piergiorgio Stevanato ◽  
Renren Li ◽  
Hui Liu ◽  
...  

Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.


2015 ◽  
Vol 43 (2) ◽  
pp. 191-196
Author(s):  
Ensieh Ashrafi ◽  
Morteza Zahedi ◽  
Jamshid Razmjoo

The effect of salt stress on enzyme activities of nine alfalfa cultivars at germination and seedling stage was studied. The activities of SOD, GR, POX and APOX were higher in salt tolerant and lower in salt sensitive cultivars. Results of the effect of salt stress on the SOD, GR, POX, APOX activities and MDA content may be used to select salt tolerance cultivars at the germination and seedling stages. SOD, GR, POX, APOX and MDA may play an important role in salt tolerant mechanisms in alfalfa. DOI: http://dx.doi.org/10.3329/bjb.v43i2.21672 Bangladesh J. Bot. 43(2): 191-196, 2014 (September)


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Huixian Xing ◽  
Wenguan Zeng ◽  
Jialing Xu ◽  
Lili Mao ◽  
...  

Abstract Background Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. Results In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. Conclusions These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.


HortScience ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 1280-1287
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Yuejin Weng ◽  
Beiquan Mou ◽  
Ainong Shi

Little has been done with respect to breeding for salt-tolerant cowpea (Vigna unguiculata) cultivars despite of salt stress being a growing threat to cowpea production. Seedling stage is one the most susceptible stages to salt stress in cowpea. Establishing a streamlined methodology for rapidly screening a large number of genotypes will significantly contribute toward enhancing cowpea breeding for salt tolerance. Therefore, the objective of this study was to establish and validate a simple approach for salt tolerance evaluation in cowpea seedlings. A total of 30 genotypes including two controls (PI582468, a salt-tolerant genotype, and PI255774, a salt-sensitive genotype) were greenhouse-grown under 0 mm and 200 mm NaCl. A total of 14 above-ground traits were evaluated. Results revealed: (1) significant differences were observed in average number of dead plants per pot, leaf injury scores, relative salt tolerance (RST) for chlorophyll, plant height, and leaf and stem biomass among the 30 genotypes; (2) all PI255774 plants were completely dead, whereas those of PI582438 were fully green after 2 weeks of salt stress, which validated this methodology; (3) RST for chlorophyll content was highly correlated with number of dead plants and leaf injury scores; (4) RST for leaf biomass was moderately correlated with number of dead plants and leaf injury scores; and (5) RST in plant height was poorly correlated with number of dead plants and leaf injury scores Therefore, less number of dead plants per pot, high chlorophyll content, and less leaf injury scores were good criteria for salt tolerance evaluation in cowpea. This study provided a simple methodology and suggested straightforward criteria to evaluate salt tolerance at seedling stage in cowpea.


2021 ◽  
Author(s):  
Chengjian Jiang ◽  
Xinghua Cai ◽  
Huijie Sun ◽  
Huashan Bai ◽  
Yanyi Chen ◽  
...  

A novel strain named Meyerozyma guilliermondii GXDK6 was provided in this work, which was confirmed to survive independently under high salt stress (12% NaCl) or co-stress condition of strong acid (pH 3.0) and high salts (10% NaCl) without sterilization. Its survival mechanism under high salt stress was revealed by integrated omics for the first time. Whole-genome analysis showed that 14 genes (e.g., GPD1 and FPS1) of GXDK6 relevant to salt tolerance were annotated and known to belong to various salt-resistant mechanisms (e.g., regulation of cell signal transduction and glycerol metabolism controls). Transcriptome sequencing results indicated that 1220 genes (accounting for 10.15%) of GXDK6 were differentially transcribed (p < 0.05) when GXDK6 growth was under 10% stress for 16 h, including important novel salt-tolerant-related genes (e.g., RTM1 and YHB1). Proteomics analysis demonstrated that 1005 proteins (accounting for 27.26%) of GXDK6 were differentially expressed (p < 0.05) when GXDK6 was stressed by 10% NaCl. Some of the differentially expressed proteins were defined as the novel salt-tolerant related proteins (e.g., sugar transporter STL1 and NADPH-dependent methylglyoxal reductase). Metabolomic analysis results showed that 63 types of metabolites (e.g., D-mannose, glycerol and inositol phosphate) of GXDK6 were up- or downregulated when stressed by 10% NaCl. Among them, D-mannose is one of the important metabolites that could enhance the salt-tolerance survival of GXDK6.


2022 ◽  
Author(s):  
Rachel Predeepa ◽  
Ranjith Kumar ◽  
George C. Abraham ◽  
T. S. Subramanian

Abstract Background: Cotton is a major cash crop in the global and, in particular, the Indian markets, playing an important economic role in the textile and oil industries. The cotton plant is one of the highly bred plants that is highly sensitive to salt stress. As cotton is a non-food crop, the availability of non-saline terrain and water for the cultivation of cotton plants is only next to other food crops, thereby posing a need to better understand the salt tolerance of this plant. Gossypium hirsutum L. cultivars MCU 5, LRA 5166, and SVPR 2 were selected based on exomorphic traits like staple length and cropping season so that the genotypic responses to salt stress and salt shock can be compared for interpreting the effects of salinity on in vitro germination. Thus, this study aims to establish genotypic dependence on salinity tolerance. Results: The results affirmed genotypic variation in salinity tolerance, with MCU 5 tolerating salt stress better than LRA 5166 and SVPR 2 in all the observed stages of growth of the plant and the parameters measured. Further salt-tolerant cotton varieties were observed to be long-staple length varieties; staple length is the fiber character of the cotton lint. Moreover, salt tolerance in the vegetative growth stage of cotton plants is not independent of the germination stage of the plant.Conclusion: Nevertheless, the correlation of genotypic dependence to morphological characteristics, in particular, staple length (and cropping season), is of agronomic and commercial significance. Further research by screening and investigating a greater number of cultivars using biochemical and molecular techniques will provide a better understanding of this observed phenotypical relationship to the genotypes of cotton cultivars under salt stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xu ◽  
Jia-hui Lu ◽  
Jia-de Zhang ◽  
Deng-kui Liu ◽  
Yue Wang ◽  
...  

Abstract Background Soil salinization extensively hampers the growth, yield, and quality of crops worldwide. The most effective strategies to counter this problem are a) development of crop cultivars with high salt tolerance and b) the plantation of salt-tolerant crops. Glycyrrhiza inflata, a traditional Chinese medicinal and primitive plant with salt tolerance and economic value, is among the most promising crops for improving saline-alkali wasteland. However, the underlying molecular mechanisms for the adaptive response of G. inflata to salinity stress remain largely unknown. Result G. inflata retained a high concentration of Na+ in roots and maintained the absorption of K+, Ca2+, and Mg2+ under 150 mM NaCl induced salt stress. Transcriptomic analysis of G. inflata roots at different time points of salt stress (0 min, 30 min, and 24 h) was performed, which resulted in 70.77 Gb of clean data. Compared with the control, we detected 2645 and 574 differentially expressed genes (DEGs) at 30 min and 24 h post-salt-stress induction, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that G. inflata response to salt stress post 30 min and 24 h was remarkably distinct. Genes that were differentially expressed at 30 min post-salt stress induction were enriched in signal transduction, secondary metabolite synthesis, and ion transport. However, genes that were differentially expressed at 24 h post-salt-stress induction were enriched in phenylpropane biosynthesis and metabolism, fatty acid metabolism, glycerol metabolism, hormone signal transduction, wax, cutin, and cork biosynthesis. Besides, a total of 334 transcription factors (TFs) were altered in response to 30 min and 24 h of salt stress. Most of these TFs belonged to the MYB, WRKY, AP2-EREBP, C2H2, bHLH, bZIP, and NAC families. Conclusion For the first time, this study elucidated the salt tolerance in G. inflata at the molecular level, including the activation of signaling pathways and genes that regulate the absorption and distribution of ions and root growth in G. inflata under salt stress conditions. These findings enhanced our understanding of the G. inflata salt tolerance and provided a theoretical basis for cultivating salt-tolerant crop varieties.


Sign in / Sign up

Export Citation Format

Share Document