scholarly journals Quantifiable In Vivo Imaging Biomarkers of Retinal Regeneration by Photoreceptor Cell Transplantation

2019 ◽  
Author(s):  
Ying V. Liu ◽  
Simrat Sodhi ◽  
Gilbert Xue ◽  
Derek Teng ◽  
Dzhalal Agakishiev ◽  
...  

AbstractPurposeShort-term improvements in retinal anatomy are known to occur in preclinical models of photoreceptor transplantation. However, correlative changes over the long term are poorly understood. We aimed to develop a quantifiable imaging biomarker grading scheme, using non-invasive multimodal confocal scanning laser ophthalmoscopy (cSLO) imaging, to enable serial evaluation of photoreceptor transplantation over the long term.MethodsYellow-green fluorescent microspheres were transplanted into the vitreous cavity and/or subretinal space of C57/BL6J mice. Photoreceptor cell suspensions or sheets from rhodopsin-green fluorescent protein mice were transplanted subretinally, into either NOD.CB17-Prkdcscid/J or C3H/HeJ-Pde6brd1 mice. Multimodal cSLO imaging was performed serially for up to three months after transplantation. Imaging biomarkers were scored, and a grade was defined for each eye by integrating the scores. Image grades were correlated with immunohistochemistry (IHC) data.ResultsMultimodal imaging enabled the extraction of quantitative imaging biomarkers including graft size, GFP intensity, graft length, on-target graft placement, intra-graft lamination, hemorrhage, retinal atrophy, and peri-retinal proliferation. Migration of transplanted material was observed. Changes in biomarker scores and grades were detected in 13/16 and 7/16 eyes, respectively. A high correlation was found between image grades and IHC parameters.ConclusionsSerial evaluation of multiple imaging biomarkers, when integrated into a per-eye grading scheme, enabled comprehensive tracking of longitudinal changes in photoreceptor cell grafts over time. The application of systematic multimodal in vivo imaging could be useful in increasing the efficiency of preclinical retinal cell transplantation studies in rodents and other animal models.

2020 ◽  
Vol 9 (7) ◽  
pp. 5
Author(s):  
Ying V. Liu ◽  
Simrat K. Sodhi ◽  
Gilbert Xue ◽  
Derek Teng ◽  
Dzhalal Agakishiev ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3324-3324
Author(s):  
Satyajit Kosuri ◽  
Sang Mee Lee ◽  
Hongtao Liu ◽  
Mylove Mortel ◽  
Lucy A Godley ◽  
...  

Background: Survival in patients (pts) with relapsed/refractory (R/R) acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS) is dismal. Treatment options are limited; however, a proportion of these individuals can be rescued by allogeneic stem cell transplantation (allo-SCT). Historically, allo-SCT, especially for R/R myeloid diseases, has used myeloablative regimens and no T-cell depletion (TCD) to maximize graft-versus-leukemia effect, often restricting this approach to younger and fit pts with matched donors. The aim of this study was to investigate outcomes of in vivo T-cell depleted stem cell transplantation (TCD-SCT) in a high-risk AML and MDS population. Methods: We performed a retrospective analysis of 141 patients with R/R AML (n=108)/high risk MDS (RAEB or CMML, n=33) who received TCD-SCT at our center from 2002-2015. Median age was 55 years (18-71) with 37 (26%) pts older than 60. Patients underwent in vivo TCD with alemtuzumab or ATG and 117 (88%) received reduced-intensity conditioning (RIC). Alemtuzumab was generally given as 100 mg total divided over 5 days whereas rabbit ATG dosing included days -1, - 3, -5 (+/- on day -7). Alemtuzumab usually partnered with matched related (n=65; 46%) or unrelated (n=53; 38%) peripheral blood stem cell (PBSC) grafts whereas ATG mostly was a component of umbilical cord grafts combined with a CD34 selected haploidentical donor (haplo-cord) (n=23; 16%). Prognostic factors such as age, HCT-CI, CIBMTR score (Duval 2010), revised disease risk index (R-DRI), donor type and pre-transplant disease status were analyzed. Multivariate cox regression models were considered from forward selection for factors with a p value <0.1 in univariate analysis. Results: Table 1 summarizes baseline characteristics. Among the 141 R/R AML or high risk MDS pts, AML predominated (77%). Sixty six (47%) pts had primary induction failure (PIF), 42 (37%) had relapse and 33 (23%) had high risk MDS. Eighty three pts (59%) had peripheral blasts at time of TCD-SCT. Cumulative incidence (CI) of relapse for all pts was 53% and non-relapse mortality was 28% at 2 yrs. Two and 5 yr PFS rates for the group were 19% and 11%, respectively. Two and 5 yr OS rates for the group were 30% and 18%, respectively. Figure 1 shows OS by disease type. Day 100 mortality was 18%. Twenty one percent developed Grade 2-4 acute GVHD (aGVHD) (6% Grade 3-4), and only 5% developed chronic GVHD (cGVHD) requiring therapy. Figure 2 shows CI of cGVHD amongst disease types. Differences in 2yr survival outcomes were not significant among prognostic factors. Specifically, age 60+ vs younger was not prognostic (PFS 24% vs 17% p=0.4, OS 29% vs 29% p=0.7). Likewise, haplo-cord did not differ relative to matched donors in outcomes (PFS 18% vs 26% p=0.2, OS 35% vs 29% p=0.5). Conclusions: Although novel therapeutic approaches are emerging for R/R AML and high risk MDS, allo-SCT remains an established option for long-term disease control. In our analysis, outcomes after in vivo TCD-SCT in R/R AML and high-risk MDS pts treated with RIC mirror published historical results (Duval 2010, Schlenk 2010) but with low rates of cGVHD. The lack of significant difference in survival outcomes amongst age groups and donor sources suggests RIC with in vivo TCD can also be utilized as a platform in older individuals and those with alternative donors. With high relapse rates in this population, better pre-transplant disease reduction, minimal residual disease monitoring and post-transplant maintenance will be critical to increase long-term cures. Disclosures Liu: Agios: Honoraria; Arog: Other: PI of clinical trial; BMS: Research Funding; Karyopharm: Research Funding; Novartis: Other: PI of clinical trial. Larson:Novartis: Honoraria, Other: Contracts for clinical trials; Agios: Consultancy; Celgene: Consultancy. Odenike:Oncotherapy: Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Astra Zeneca: Research Funding; Astex Pharmaceuticals: Research Funding; NS Pharma: Research Funding; Gilead Sciences: Research Funding; Janssen Oncology: Research Funding; Agios: Research Funding; CTI/Baxalta: Research Funding. Stock:Kite, a Gilead Company: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; UpToDate: Honoraria; Research to Practice: Honoraria. Kline:Merck: Honoraria; Merck: Research Funding. Riedell:Bayer: Honoraria, Speakers Bureau; Kite/Gilead: Honoraria, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Verastem: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding. Van Besien:Miltenyi Biotec: Research Funding. Bishop:Kite: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Consultancy, Membership on an entity's Board of Directors or advisory committees; CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Artz:Miltenyi: Research Funding.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Outi M. Villet ◽  
Antti Siltanen ◽  
Tommi Pätilä ◽  
M. Ali A. Mahar ◽  
Antti Vento ◽  
...  

The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival afterin vivotransplantation.


2021 ◽  
Vol 22 (8) ◽  
pp. 3994
Author(s):  
Yousheng Mao ◽  
Kwang-Heum Hong ◽  
Weifang Liao ◽  
Li Li ◽  
Seong-Jin Kim ◽  
...  

Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Wagstaff ◽  
Anneloor L. M. A. ten Asbroek ◽  
Jacoline B. ten Brink ◽  
Nomdo M. Jansonius ◽  
Arthur A. B. Bergen

AbstractGenetically complex ocular neuropathies, such as glaucoma, are a major cause of visual impairment worldwide. There is a growing need to generate suitable human representative in vitro and in vivo models, as there is no effective treatment available once damage has occured. Retinal organoids are increasingly being used for experimental gene therapy, stem cell replacement therapy and small molecule therapy. There are multiple protocols for the development of retinal organoids available, however, one potential drawback of the current methods is that the organoids can take between 6 weeks and 12 months on average to develop and mature, depending on the specific cell type wanted. Here, we describe and characterise a protocol focused on the generation of retinal ganglion cells within an accelerated four week timeframe without any external small molecules or growth factors. Subsequent long term cultures yield fully differentiated organoids displaying all major retinal cell types. RPE, Horizontal, Amacrine and Photoreceptors cells were generated using external factors to maintain lamination.


2021 ◽  
Author(s):  
Yosuke Tanaka ◽  
Yasushi Kubota ◽  
Ivo Lieberam ◽  
Jillian L. Barlow ◽  
Josh W. Bramley ◽  
...  

AbstractNumerous strategies exist to isolate hematopoietic stem cells (HSCs) using complex combinations of markers and flow cytometry. However, robust identification of HSCs using imaging techniques is substantially more challenging which has prompted the recent development of HSC reporter mice. To date, none of the molecules used in these reporters have been useful for human HSC identification. Here we report that PLXDC2 is a useful marker for both mouse and human HSCs. Using a green fluorescent protein (GFP) knock-in at the Plxdc2 locus in mice (hereafter denoted as Plxdc2-GFP), we showed that Plxdc2-GFP is highly expressed in HSCs with 1 in 2.8 Plxdc2-GFP+CD150+ cells giving long-term multi-lineage reconstitution in transplantation. Moreover, we developed a novel human PLXDC2 antibody and showed that human PLXDC2+ HSCs have stronger long-term multilineage reconstitution ability compared with PLXDC2- HSCs in a xenograft model. Thus, our study identifies PLXDC2 as a highly relevant molecule in HSC identification, potentially allowing greater purity and live in vivo tracking of these cells.SummaryTo date, few molecules are available for isolation of HSCs across species. The present study shows that PLXDC2 is a highly useful molecule for isolation of HSCs, which works across mouse and human.


2001 ◽  
Vol 155 (5) ◽  
pp. 733-738 ◽  
Author(s):  
Josef Priller ◽  
Derek A. Persons ◽  
Francisco F. Klett ◽  
Gerd Kempermann ◽  
Georg W. Kreutzberg ◽  
...  

The versatility of stem cells has only recently been fully recognized. There is evidence that upon adoptive bone marrow (BM) transplantation (BMT), donor-derived cells can give rise to neuronal phenotypes in the brains of recipient mice. Yet only few cells with the characteristic shape of neurons were detected 1–6 mo post-BMT using transgenic or newborn mutant mice. To evaluate the potential of BM to generate mature neurons in adult C57BL/6 mice, we transferred the enhanced green fluorescent protein (GFP) gene into BM cells using a murine stem cell virus-based retroviral vector. Stable and high level long-term GFP expression was observed in mice transplanted with the transduced BM. Engraftment of GFP-expressing cells in the brain was monitored by intravital microscopy. In a long-term follow up of 15 mo post-BMT, fully developed Purkinje neurons were found to express GFP in both cerebellar hemispheres and in all chimeric mice. GFP-positive Purkinje cells were also detected in BM chimeras from transgenic mice that ubiquitously express GFP. Based on morphologic criteria and the expression of glutamic acid decarboxylase, the newly generated Purkinje cells were functional.


2021 ◽  
Vol 11 ◽  
Author(s):  
Leo Ruhnke ◽  
Friedrich Stölzel ◽  
Uta Oelschlägel ◽  
Malte von Bonin ◽  
Katja Sockel ◽  
...  

In patients who have undergone allogeneic hematopoietic cell transplantation (HCT), myeloid mixed donor chimerism (MC) is a risk factor for disease relapse. In contrast, several studies found favorable outcome in patients with lymphoid MC. Thus far, most studies evaluating MC focused on a short-term follow-up period. Here, we report the first case series of long-term survivors with MC. We screened 1,346 patients having undergone HCT for myeloid neoplasms at our center from 1996 to 2016; 443 patients with data on total peripheral blood mononuclear cells (PBMC)/CD4+/CD34+ short tandem repeat (STR) donor chimerism (DC) and follow-up ≥24 months post-HCT were included. We identified 10 patients with long-term MC (PBMC DC &lt;95% at ≥12 months post-HCT). Median follow-up was 11 years. All patients had received combined ex vivo/in vivo T cell-depleted (TCD) peripheral blood stem cells; none experienced ≥grade 2 acute graft-versus-host disease (GVHD). The mean total PBMC, CD4+, and CD34+ DC of all patients were 95.88%, 85.84%, and 90.15%, respectively. Reduced-intensity conditioning (RIC) was associated with a trend to lower mean total DC. Of note, two patients who experienced relapse had lower CD34+ DC but higher CD4+ DC as compared with patients in continuous remission. Bone marrow evaluation revealed increased CD4+/FOXP3+ cells in patients with MC, which might indicate expansion of regulatory T cells (Tregs). Our results support known predictive factors associated with MC such as RIC and TCD, promote the value of CD34+ MC as a potential predictor of relapse, highlight the potential association of CD4+ MC with reduced risk of GVHD, and indicate a possible role of Tregs in the maintenance of immune tolerance post-HCT.


2021 ◽  
Vol 23 (1) ◽  
pp. 474
Author(s):  
Ido Ben-Shalom ◽  
Arnon Karni ◽  
Hadar Kolb

The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Deepa Sharma ◽  
Laurentius Oscar Osapoetra ◽  
Mateusz Faltyn ◽  
Anoja Giles ◽  
Martin Stanisz ◽  
...  

Abstract Background The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. Results The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. Conclusion Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Sign in / Sign up

Export Citation Format

Share Document