scholarly journals Model difference in the effect of cilostazol on the development of experimental pulmonary hypertension in rats

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Toshikazu Ito ◽  
Erquan Zhang ◽  
Ayaka Omori ◽  
Jane Kabwe ◽  
Masako Kawai ◽  
...  

Abstract Background Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats. Methods Fifty-one male Sprague–Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. The mean pulmonary artery pressure (mPAP), the right ventricle weight-to-left ventricle + septum weight ratio (RV/LV + S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed. Levels of the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB proteins in lung tissue were measured using Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed. Results mPAP [35.1 ± 1.7 mmHg (MCT) (n = 9) vs. 16.6 ± 0.7 (control) (n = 9) (P < 0.05); 29.1 ± 1.5 mmHg (CH) (n = 10) vs. 17.5 ± 0.5 (control) (n = 10) (P < 0.05)], RV/LV + S [0.40 ± 0.01 (MCT) (n = 18) vs. 0.24 ± 0.01 (control) (n = 10) (P < 0.05); 0.41 ± 0.03 (CH) (n = 13) vs. 0.27 ± 0.06 (control) (n = 10) (P < 0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1 ± 1.1 mmHg (n = 11) (P < 0.05), RV/LV + S 0.30 ± 0.01 (n = 14) (P < 0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and increased in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats. Conclusions We found model differences in the effect of CLZ on PH development. CLZ might exert a preventive effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might depend on the PH etiology.

2021 ◽  
Author(s):  
Toshikazu Ito ◽  
Erquan Zhang ◽  
Ayaka Omori ◽  
Jane Kabwe ◽  
Masako Kawai ◽  
...  

Abstract Background: Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats.Methods: Fifty-one male Sprague-Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. Mean PAP (mPAP), the right ventricle weight-to-left ventricle+septum weight ratio (RV/LV+S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed.Protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB in lung tissue was measured by Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed.Results: mPAP [35.1±1.7 mmHg (MCT) (n=9) vs.16.6±0.7 (control) (n=9) (p<0.05); 29.1±1.5 mmHg (CH) (n=10) vs. 17.5±0.5 (control) (n=10) (p<0.05)], RV/LV+S [0.40±0.01 (MCT) (n=18) vs. 0.24±0.01 (control) (n=10) (p<0.05); 0.41±0.03 (CH) (n=13) vs. 0.27±0.06 (control) (n=10) (p<0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1±1.1 mmHg (n=11) (p<0.05), RV/LV+S 0.30±0.01 (n=14) (p<0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and high in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats.Conclusion: We found model differences in the effect of CLZ on PH development. CLZ might have a preventable effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might be dependent on PH etiology.


1993 ◽  
Vol 75 (4) ◽  
pp. 1615-1623 ◽  
Author(s):  
J. R. Klinger ◽  
R. D. Petit ◽  
R. R. Warburton ◽  
D. S. Wrenn ◽  
F. Arnal ◽  
...  

Neutral endopeptidase (NEP) inhibition is thought to blunt hypoxic pulmonary hypertension by reducing atrial natriuretic peptide (ANP) metabolism, but this hypothesis has not been confirmed. We measured NEP activity, guanosine 3',5'-cyclic monophosphate (cGMP) production, plasma ANP levels, and cardiac ANP synthesis in rats given an orally active NEP inhibitor (SCH-34826) during 3 wk of hypoxia. Under normoxic conditions, SCH-34826 had no effect on plasma ANP levels but reduced pulmonary and renal NEP activity by 50% and increased urinary cGMP levels (60 +/- 6 vs. 22 +/- 4 pg/mg creatinine; P < 0.05). Under hypoxic conditions, SCH-34826-treated rats had lower plasma ANP levels (1,259 +/- 361 vs. 2,101 +/- 278 pg/ml; P < 0.05), lower right ventricular systolic pressure (53 +/- 5 vs. 73 +/- 2 mmHg; P < 0.05), lower right ventricle weight-to-left ventricle+septum weight ratio (0.47 +/- 0.04 vs. 0.53 +/- 0.03; P < 0.05), and less muscularization and percent medial wall thickness of peripheral pulmonary arteries (22 +/- 5 vs. 45 +/- 8% and 17 +/- 1 vs. 25 +/- 1%, respectively; P < 0.05 for all values) than did rats treated with vehicle alone. These values were not affected by SCH-34826 under normoxic conditions. SCH-34826 decreased right ventricular ANP tissue levels in hypoxic rats (27 +/- 10 vs. 8 +/- 1 ng/mg protein; P < 0.05) but did not affect steady-state ANP mRNA levels. We conclude that NEP inhibition blunts pulmonary hypertension without increasing plasma ANP levels.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Peng-chun Yang ◽  
Wei-zhe Bai ◽  
Jing Wang ◽  
Cai-hua Yan ◽  
Wei-feng Huang ◽  
...  

Objectives. Schistosomiasis is a parasitic disease that affects over 142 million people worldwide. The main causes of death of schistosomiasis include liver granuloma and secondary hepatic cirrhosis resulting from severe fibrosis. Despite intensive research, controlling liver fibrosis associated with schistosomiasis remains challenging. Sedum sarmentosum total flavonoid (SSTF) is a promising agent to reduce liver fibrosis with an unknown mechanism. Thus, the objectives of this study are to validate its effect on the liver fibrosis caused by schistosomiasis and to explore the underlying molecular mechanism. Methods. Sixty male Sprague-Dawley rats were randomly divided into six groups: one group of normal control and five groups of liver fibrosis induced by schistosomiasis japonica with or without SSTF or colchicine treatment, the latter serving as the positive control. Liver tissues from each animal were harvested to observe the degree and grade of hepatic fibrosis. We also measured the expression of transforming growth factor-beta 1 (TGF-β1) and Smad7 using RT-qPCR, Western blot, and immunohistochemistry. Results. Compared with the untreated model group, groups treated with SSTF at all three tested doses had significantly reduced hepatic fibrosis ( P < 0.05 ). Each dose of SSTF also significantly reduced TGF-β1 protein expression and mRNA levels in the liver tissues ( P < 0.05 ). In contrast, the middle and high doses of SSTF significantly increased Smad7 protein expression and mRNA levels ( P < 0.05 ). Immunohistochemistry showed that each dose of SSTF reduced TGF-β1 protein expression ( P < 0.05 ). Conclusion. Our results demonstrated that SSTF alleviated schistosomiasis japonica-induced hepatic fibrosis by inhibiting the TGF-β1/Smad7 pathway.


1991 ◽  
Vol 260 (6) ◽  
pp. H1929-H1934 ◽  
Author(s):  
R. C. Ashmore ◽  
D. M. Rodman ◽  
K. Sato ◽  
S. A. Webb ◽  
R. F. O'Brien ◽  
...  

We recently described the early appearance of pulmonary hypertension in the fawn-hooded rat (FHR), an animal with platelet storage pool disease also known to develop systemic hypertension at later ages. Since mediators released from aggregating platelets influence vascular tone, we hypothesized that platelet-mediated pulmonary vascular responses in FHR may be abnormal and potentially linked to the mechanism of pulmonary hypertension. To test this we examined reactivity of isolated pulmonary arteries (PA) and thoracic aortas (Ao) from young FHR with moderately severe pulmonary hypertension but normal systemic pressures. These vessels were compared with PA and Ao from control Sprague-Dawley rat (SDR). Aggregating platelets (1,000-40,000 platelets/mm3) from FHR caused dilation of SDR PA and Ao but constriction of FHR PA and Ao. Qualitatively similar responses were also observed with platelets isolated from SDR implying that abnormal responses were not simply due to the storage pool deficiency in FHR. Response to the platelet-derived endothelium-dependent vasodilator ADP was markedly impaired in FHR PA and mildly impaired in FHR Ao. Endothelium-dependent dilation to acetylcholine, but not to A23187, was mildly impaired in FHR PA while responses to both dilators were normal in FHR Ao. Endothelium-independent dilation to sodium nitroprusside was normal in both FHR PA and Ao. Constrictor sensitivity to serotonin, but not to the thromboxane A2 mimetic U-46619, was increased in FHR PA while responses to both constrictors were normal in FHR Ao. In summary, PAs from FHR with spontaneous pulmonary hypertension exhibit paradoxical constriction to both normal and storage pool deficient platelets.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 290 (2) ◽  
pp. L367-L374 ◽  
Author(s):  
Ioana R. Preston ◽  
Nicholas S. Hill ◽  
Rod R. Warburton ◽  
Barry L. Fanburg

The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10−5 μM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.


2021 ◽  
Vol 22 (17) ◽  
pp. 9500
Author(s):  
Mayo Miura ◽  
Kenji Imai ◽  
Hiroyuki Tsuda ◽  
Rika Miki ◽  
Sho Tano ◽  
...  

Oxidative stress plays a pathological role in pulmonary hypoplasia and pulmonary hypertension in congenital diaphragmatic hernia (CDH). This study investigated the effect of molecular hydrogen (H2), an antioxidant, on CDH pathology induced by nitrofen. Sprague-Dawley rats were divided into three groups: control, CDH, and CDH + hydrogen-rich water (HW). Pregnant dams of CDH + HW pups were orally administered HW from embryonic day 10 until parturition. Gasometric evaluation and histological, immunohistochemical, and real-time polymerase chain reaction analyses were performed. Gasometric results (pH, pO2, and pCO2 levels) were better in the CDH + HW group than in the CDH group. The CDH + HW group showed amelioration of alveolarization and pulmonary artery remodeling compared with the CDH group. Oxidative stress (8-hydroxy-2′-deoxyguanosine-positive-cell score) in the pulmonary arteries and mRNA levels of protein-containing pulmonary surfactant that protects against pulmonary collapse (surfactant protein A) were significantly attenuated in the CDH + HW group compared with the CDH group. Overall, prenatal H2 administration improved respiratory function by attenuating lung morphology and pulmonary artery thickening in CDH rat models. Thus, H2 administration in pregnant women with diagnosed fetal CDH might be a novel antenatal intervention strategy to reduce newborn mortality due to CDH.


Author(s):  
Sunghwan Kyun ◽  
Choongsung Yoo ◽  
Hun-Young Park ◽  
Jisu Kim ◽  
Kiwon Lim

We investigated the effects of oral lactate administration on protein synthesis and degradation factors in rats over 2 h after intake. Seven-week-old male Sprague–Dawley rats were randomly divided into four groups (n = 8/group); their blood plasma levels of lactate, glucose, insulin, and insulin-like growth factor 1 (IGF1) were examined following sacrifice at 0, 30, 60, or 120 min after sodium lactate (2 g/kg) administration. We measured the mRNA expression levels of protein synthesis-related genes (IGF receptor, protein kinase B (Akt), mammalian target of rapamycin (mTOR)) or degradation-related genes (muscle RING-finger protein-1 (MuRF1), atrogin-1) and analyzed the protein expression and phosphorylation (activation) of Akt and mTOR. Post-administration, the plasma lactate concentration increased to 3.2 mmol/L after 60 min. Plasma glucose remained unchanged throughout, while insulin and IGF1 levels decreased after 30 min. The mRNA levels of IGF receptor and mTOR peaked after 60 min, and Akt expression was significantly upregulated from 30 to 120 min. However, MuRF1 and atrogin-1 expression levels were unaffected. Akt protein phosphorylation did not change significantly, whereas mTOR phosphorylation significantly increased after 30 min. Thus, lactate administration increased the mRNA and protein expression of protein-synthesis factors, suggesting that it can potentially promote skeletal muscle synthesis.


2006 ◽  
Vol 290 (5) ◽  
pp. L1004-L1009 ◽  
Author(s):  
Huang-Ping Yu ◽  
Ya-Ching Hsieh ◽  
Takao Suzuki ◽  
Tomoharu Shimizu ◽  
Mashkoor A. Choudhry ◽  
...  

Although 17β-estradiol (E2) administration after trauma-hemorrhage attenuates lung injury in male rodents, it is not known whether the salutary effects are mediated via estrogen receptor (ER)-α or ER-β. We hypothesized that the salutary effects of E2 lung are mediated via ER-β. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 40 mmHg for 90 min, then resuscitation). E2 (50 μg/kg), ER-α agonist propyl pyrazole triol (PPT; 5 μg/kg), ER-β agonist diarylpropiolnitrile (DPN; 5 μg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. At 24 h after trauma-hemorrhage or sham operation, bronchoalveolar fluid (BALF) was collected for protein concentration, LDH activity, and nitrate/nitrite and IL-6 levels. Moreover, lung tissue was used for inducible nitric oxide synthase (iNOS) mRNA/protein expression, nitrate/nitrite and IL-6 levels, and wet/dry weight ratio ( n = 6 rats/group). One-way ANOVA and Tukey's test were used for statistical analysis. The results indicated that E2 downregulated lung iNOS expression after trauma-hemorrhage. Protein concentration, LDH activity, and nitrate/nitrite and IL-6 levels in BALF and nitrate/nitrite and IL-6 levels in the lung increased significantly after trauma-hemorrhage; however, administration of DPN but not PPT significantly improved all parameters. Moreover, DPN treatment attenuated trauma-hemorrhage-mediated increase in iNOS mRNA/protein expression in the lung. In contrast, no significant change in the above parameters was observed with PPT. Thus the salutary effects of E2 on attenuation of lung injury are mediated via ER-β, and ER-β-induced downregulation of iNOS likely plays a significant role in the DPN-mediated lung protection after trauma-hemorrhage.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shanshan Xu ◽  
Xuefeng Xu ◽  
Ziming Zhang ◽  
Lingling Yan ◽  
Liyan Zhang ◽  
...  

Abstract Background Pulmonary hypertension (PH) is a complex pulmonary vascular disease characterized by an imbalance in vasoconstrictor/vasodilator signaling within the pulmonary vasculature. Recent evidence suggests that exposure to hypoxia early in life can cause alterations in the pulmonary vasculature and lead to the development of PH. However, the long-term impact of postnatal hypoxia on lung development and pulmonary function remains unknown. N6-methyladenosine (m6A) regulates gene expression and governs many important biological processes. However, the function of m6A in the development of PH remains poorly characterized. Thus, the purpose of this investigation was to test the two-fold hypothesis that (1) postnatal exposure to hypoxia would alter lung development leading to PH in adult rats, and (2) m6A modification would change in rats exposed to hypoxia, suggesting it plays a role in the development of PH. Methods Twenty-four male Sprague–Dawley rats were exposed to a hypoxic environment (FiO2: 12%) within 24 h after birth for 2 weeks. PH was defined as an increased right ventricular pressure (RVP) and pathologic changes of pulmonary vasculature measured by α-SMA immunohistochemical staining. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was performed to analyze m6A modification changes in lung tissue in 2- and 9-week-old rats that were exposed to postnatal hypoxia. Results Mean pulmonary arterial pressure, lung/body weight ratio, and the Fulton index was significantly greater in rats exposed to hypoxia when compared to control and the difference persisted into adulthood. m6A methyltransferase and demethylase proteins were significantly downregulated in postnatal hypoxia-induced PH. Distinct m6A modification peak-related genes differed between the two groups, and these genes were associated with lung development. Conclusions Our results indicate postnatal hypoxia can cause PH, which can persist into adulthood. The development and persistence of PH may be because of the continuous low expression of methyltransferase like 3 affecting the m6A level of PH-related genes. Our findings provide new insights into the impact of postnatal hypoxia and the role of m6A in the development of pulmonary vascular pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document