scholarly journals Standardized herbal extract PM014 alleviates fine dust-induced lung inflammation in mice

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ye-Seul Lee ◽  
Daeun Min ◽  
Seon-Young Park ◽  
Junyoung Lee ◽  
Hyunsu Bae

Abstract Background Fine dust penetrates deep into the human alveoli, and the fine dust accumulated in the bronchus and lungs can directly trigger various respiratory diseases. PM014 (HL301) is the herbal extract derived from the herbal medicine Chung-Sang-Bo-Ha-Tang which is used for the treatment of lung diseases. Methods To evaluate the effect of PM014 on the lung inflammation induced by fine dust, this study investigated inflammatory responses in the lung upon pm10 exposure by examining the infiltration of inflammatory cell profiles from bronchial alveolar lavage fluid (BALF), lung histology, and production of pro-inflammatory cytokines measured by RT-PCR and ELISA. Results PM014-treated mice exhibited reduced lung tissue damage and inflammatory cell infiltration. Bronchoalveolar lavage fluid (BALF) analysis showed significant decrease in the population of total cells, macrophages, eosinophils, and neutrophils in PM014-treated mice. PM014 treatment downregulated the pro-inflammatory cytokine expressions including IL-1b, IL-8, IL-6, TNF-alpha, IL-21 and IL-17. ELISA analysis also showed reduced production of IL-1b, IL-6 and IL-17 in PM014-treated mice. Conclusion PM014 suppressed the pm10-induced inflammatory response in mice. This study shows that PM014 is a possible therapeutic agent for lung inflammation induced by fine dust.

2003 ◽  
Vol 198 (4) ◽  
pp. 533-543 ◽  
Author(s):  
Kyoko Honda ◽  
Masafumi Arima ◽  
Gang Cheng ◽  
Shinsuke Taki ◽  
Hirokuni Hirata ◽  
...  

PGD2, a lipid mediator released from mast cells, is known to participate in allergic reactions. However, the mechanism by which PGD2 contributes to such reactions remains unclear. We established a novel experimental model of asthma that permitted direct assessment of the role of PGD2 in airway inflammation. Antigen-sensitized mice were exposed to aerosolized prostaglandin D2 (PGD2) 1 d before challenge with low-dose aerosolized antigen. Not only the numbers of eosinophils, lymphocytes, and macrophages but also the levels of IL-4 and IL-5 in bronchoalveolar lavage fluid were higher in PGD2-pretreated mice than in control mice. The expression of macrophage-derived chemokine (MDC), a chemoattractant for Th2 cells, was greater in PGD2-pretreated mice than in control. Injection of anti-MDC antibody into PGD2-pretreated mice markedly inhibited inflammatory cell infiltration as well as Th2 cyto-kine production after antigen challenge. These results indicate that PGD2 accelerates Th2 type inflammation by induction of MDC. Our results suggest that this mechanism may play a key role in the development of human asthma and that MDC might be a target molecule for therapeutic intervention.


Thorax ◽  
2019 ◽  
Vol 74 (9) ◽  
pp. 865-874 ◽  
Author(s):  
Duo Zhang ◽  
Heedoo Lee ◽  
Xiaoyun Wang ◽  
Michael Groot ◽  
Lokesh Sharma ◽  
...  

BackgroundUncontrolled lung inflammation is one of the prominent features in the pathogenesis of lung infection- associated acute lung injury (ALI). Microvesicles (MVs) are extracellular nanovesicles that are generated via direct membrane budding.MethodsBronchoalveolar lavage fluid (BALF) samples were collected from mice with or without intratracheal lipopolysaccharide (LPS) instillation. BALF MVs were characterised and MV-containing microRNA (miRNA) profiles were assessed and confirmed. Secretion and function of MV-containing miR-223/142 (MV-miR-223/142) were analysed in vivo.ResultsIn BALF, MVs are mainly derived from macrophages in response to LPS. After intratracheal instillation (i.t.) of LPS or Klebsiella pneumoniae, MV-containing miR-223/142 are dramatically induced in both BALF and serum. Mechanistically, miRNA 3′ end uridylation mediates the packing of miR-223/142 into MVs. To investigate the functional role of MV-miR-223/142, we loaded miR-223/142 mimics into unstimulated MVs and delivered them into the murine lungs via i.t. The miR-223/142 mimics-enriched MVs selectively targeted lung macrophages and suppressed the inflammatory lung responses that were triggered by LPS or K. pneumoniae. Mechanistically, miR-223 and miR-142 synergistically suppress Nlrp3 inflammasome activation in macrophages via inhibition of Nlrp3 and Asc, respectively.ConclusionsIn the pathogenesis of lung macrophage-mediated inflammatory responses, MV-miR-223/142 secretion is robustly enhanced and detectable in BALF and serum. Furthermore, restoration of intracellular miR-223/142 via vesicle-mediated delivery suppresses macrophage activation and lung inflammation via inhibition of Nlrp3 inflammasome activation.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 675
Author(s):  
Ilekuttige Priyan Shanura Fernando ◽  
Mawalle Kankanamge Hasitha Madhawa Dias ◽  
Dissanayaka Mudiyanselage Dinesh Madusanka ◽  
Hyun-Soo Kim ◽  
Eui-Jeong Han ◽  
...  

At present air pollution in parts of East Asia is at an alarming level due to elevated levels of fine dust (FD). Other than pulmonary complications, FD was found to affect the pathogenesis of ROS-dependent inflammatory responses via penetrating barrier-disrupted skin, leading to degradation of extracellular matrix components through the keratinocyte-fibroblast axis. The present study discloses the evaluation of human dermal fibroblast (HDF) responses to FD preconditioned human keratinocyte media (HPM) primed without and with (-)-loliolide (HTT). HPM-FD treatment increased the ROS level in HDFs and activated mitogen-activated protein kinase-derived nuclear factor (NF)-κB inflammatory signaling pathways with a minor reduction of viability. The above events led to cell differentiation and production of matrix metalloproteinases (MMP), increasing collagenase and elastase activity despite the increase of tissue inhibitors of metalloproteinases (TIMP). Media from HTT primed keratinocytes stimulated with FD indicated ameliorated levels of MMPs, inflammatory cytokines, and chemokines in HDFs with suppressed collagenase and elastase activity. Present observations help to understand the factors that affect HDFs in the microenvironment of FD exposed keratinocytes and the therapeutic role of HTT as a suppressor of skin aging. Further studies using organotypic skin culture models could broaden the understanding of the effects of FD and the therapeutic role of HTT.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Qixue Du ◽  
Wei Meng ◽  
Seyyed Shamsadin Athari ◽  
Renzhong Wang

Abstract Background Allergic asthma is an inflammatory disease resulting from continued or intermittent allergen exposure, and allergic rhinitis can be trigger of asthma. The main mechanism of these disease is allergic reaction and immune response dysregulation. Co-Q10 is an enzyme cofactor in mitochondria can control asthma and allergic rhinitis symptoms. In the present study, we determined that the CoQ10-induced anti-allergic effects were mediated by up-regulation of Nrf2. Methods Animal models of allergic rhinitis and allergic asthma were produced and treated with Co-Q10, Co-Q10 and O-3, Co-Q10 and Mg-S. Bronchoalveolar lavage fluid was collected from animal models, and IL-4, 5, 13, INF-y, Eicosanoids, IgE, EPO, and histamine production were measured. Also, COX-2, CCL24, CCL11, Nrf2, Eotaxin, Cytb, COX1 and ND1 genes expressions and histopathology were studied. BALf's cells were collected by tracheostomy and used in slide producing by cytospine. Cytokines, Eicosanoids, IgE, EPO, and histamine were measured by ELISA method. Gene expression was done by Real-time PCR. Results Co-Q10 with two supplementation (Mg-S and O-3) modulate MRC, BALf eosinophils, eosinophilic inflammation related genes (eotaxin, CCL11 and CCL24), peribronchial and perivascular inflammation, EPO, type 2 cytokines (IL-4, 5 and 13), IgE, histamine, Cyc-LT and LTB4 as main allergic bio-factors. Importantly, Co-Q10 treatment increased Nrf2 expression and Nrf2 induced antioxidant genes, glutathione redox and inhibited inflammation, oxidative stress injury, Th2 cytokines production and attenuated allergic inflammatory responses. Conclusion Nrf2 is activated in response to allergen, induces resistance against the rhinitis and asthma development and plays an essential role in broncho-protection. Co-Q10 increases the Nrf2 expression and the Nrf2 over-expression has strong effect in control of type2 cytokines, allergic mediators and inflammatory factors that lead to harnessing of allergy and asthma. Graphic abstract


Author(s):  
Mashael Alabed ◽  
Asma Sultana Shaik ◽  
Narjes Saheb Sharif-Askari ◽  
Fatemeh Saheb Sharif-Askari ◽  
Shirin Hafezi ◽  
...  

Memory T cells play a central role in regulating inflammatory responses during asthma. However, tissue distribution of effector memory (T<sub>EM</sub>) and central memory (T<sub>CM</sub>) T-cell subtypes, their differentiation, and their contribution to the persistence of lung tissue inflammation during asthma are not well understood. Interestingly, an increase in survival and persistence of memory T cells was reported in asthmatic lungs, which may suggest a shift toward the more persistent T<sub>CM</sub> phenotype. In this report, we investigated the differential distribution of memory T-cell subtypes during allergic lung inflammation and the mechanism regulating that. Using an OVA-sensitized asthma mouse model, we observed a significant increase in the frequency of T<sub>CM</sub> cells in inflamed lungs compared to healthy controls. Interestingly, adoptive transfer techniques confirmed substantial infiltration of T<sub>CM</sub> cells to lung tissues during allergic airway inflammation. Expression levels of T<sub>CM</sub> homing receptors, CD34 and GlyCAM-1, were also significantly upregulated in the lung tissues of OVA-sensitized mice, which may facilitate the increased T<sub>CM</sub> infiltration into inflamed lungs. Moreover, a substantial increase in the relative expression of T<sub>CM</sub> profile-associated genes (EOMES, BCL-6, ID3, TCF-7, BCL-2, BIM, and BMI-1) was noted for T<sub>EM</sub> cells during lung inflammation, suggesting a shift for T<sub>EM</sub> into the T<sub>CM</sub> state. To our knowledge, this is the first study to report an increased infiltration of T<sub>CM</sub> cells into inflamed lung tissues and to suggest differentiation of T<sub>EM</sub> to T<sub>CM</sub> cells in these tissues. Therapeutic interference at T<sub>CM</sub> infiltration or differentiations could constitute an alternative treatment approach for lung inflammation.


1999 ◽  
Vol 277 (3) ◽  
pp. L580-L588 ◽  
Author(s):  
Kevin S. Harrod ◽  
Bruce C. Trapnell ◽  
Kazuhisa Otake ◽  
Thomas R. Korfhagen ◽  
Jeffrey A. Whitsett

Surfactant protein A (SP-A) is a member of the collectin family of host defense molecules expressed primarily in the epithelial cells of the lung. To determine the role of SP-A in pulmonary adenoviral infection, SP-A-deficient (SP-A −/−) mice were intratracheally infected with a replication-deficient recombinant adenovirus, Av1Luc1. Lung inflammation was markedly increased in SP-A −/− compared with SP-A +/+ mice and was associated with increased hemorrhage and epithelial cell injury. Polymorphonuclear cells in bronchoalveolar lavage fluid (BALF) were increased in SP-A −/− mice after administration of adenovirus. Coadministration of adenovirus and purified human SP-A ameliorated adenoviral-induced lung inflammation in SP-A −/− mice. Concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were increased in BALF of SP-A −/− mice. Likewise, TNF-α, IL-6, macrophage inflammatory protein (MIP)-1α, monocyte chemotactic protein-1, and MIP-2 mRNAs were increased in lung homogenates from SP-A −/− mice 6 and 24 h after viral administration. Clearance of adenoviral DNA from the lung and uptake of fluorescent-labeled adenovirus by alveolar macrophages were decreased in SP-A −/− mice. SP-A enhances viral clearance and inhibits lung inflammation during pulmonary adenoviral infection, providing support for the importance of SP-A in antiviral host defense.


2015 ◽  
Vol 59 (10) ◽  
pp. 6317-6327 ◽  
Author(s):  
Hussein Traboulsi ◽  
Alexandre Cloutier ◽  
Kumaraswamy Boyapelly ◽  
Marc-André Bonin ◽  
Éric Marsault ◽  
...  

ABSTRACTThe host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads to high a level of morbidity and mortality in susceptible infected patients. In this context, we identified compounds that can simultaneously reduce the excessive inflammatory response and the viral replication as a strategy to treat influenza virus infection. We investigated the anti-inflammatory and antiviral potential activities of isoliquiritigenin (ILG). Interestingly, we demonstrated that ILG is a potent inhibitor of influenza virus replication in human bronchial epithelial cells (50% effective concentration [EC50] = 24.7 μM). In addition, our results showed that this molecule inhibits the expression of inflammatory cytokines induced after the infection of cells with influenza virus. We demonstrated that the anti-inflammatory activity of ILG in the context of influenza virus infection is dependent on the activation of the peroxisome proliferator-activated receptor gamma pathway. Interestingly, ILG phosphate (ILG-p)-treated mice displayed decreased lung inflammation as depicted by reduced cytokine gene expression and inflammatory cell recruitment. We also demonstrated that influenza virus-specific CD8+effector T cell recruitment was reduced up to 60% in the lungs of mice treated with ILG-p (10 mg/kg) compared to that in saline-treated mice. Finally, we showed that administration of ILG-p reduced lung viral titers and morbidity of mice infected with the PR8/H1N1 virus.


2019 ◽  
Vol 39 (4) ◽  
pp. 238-244
Author(s):  
Budi Yanti ◽  
Soetjipto Soetjipto ◽  
Ni Made Mertaniasih ◽  
Muhammad Amin

Background: Some species of the Mycobacterium tuberculosis complex (MTBC) which can cause tuberculosis, particularly M. tuberculosis and M. bovis, may have different virulence property and therefore associated with various clinical severity in tuberculosis (TB) patients. The aim of this study was to determine the differences in clinical and demographic characteristics between M. tuberculosis and M. bovis infection among Indonesian TB patients. Methods: Thirty-one new and active TB patients were confirmed to have acid fast bacilli (AFB) sputum positive and/or Xpert MTB/RIF positive for M. tuberculosis from Dr. Soewandhie Hospital, Surabaya, Indonesia. Interviews were conducted to record the clinical and demographics required. The MTBC were isolated from bronchoalveolar lavage fluid (BALF) and determined by primer-specific PCR targeting TbD1 and RD9 region gene. The degree of lung tissue damage was classified using NICE Scoring System. Results: The MTBC were detected in all patients on whom 19 and 12 isolates were classified as M. tuberculosis and M. bovis respectively. There was a different on 74.2% of productive age subjects (21-50 years) with M. tuberculosis infection (P


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2489 ◽  
Author(s):  
Na-Rae Shin ◽  
Chul Kim ◽  
Chang-Seob Seo ◽  
Je-Won Ko ◽  
Young-Kwon Cho ◽  
...  

Galgeun-tang water extract (GGWE) is used to treat various diseases such as the common cold, eczema and asthma in China and Korea. In this study, we investigated the anti-inflammatory effect of GGWE using a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced induced pulmonary inflammation mouse model. The mice were exposed to CS for a total of seven days (eight cigarettes per day for 1 h) and LPS was administered intranasally to mice on day 4. GGWE was administered by oral gavage at doses of 50 mg/kg or 100 mg/kg 1 h before exposure to CS. GGWE decreased inflammatory cell counts, and expression of inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) in bronchoalveolar lavage fluid (BALF) from mice exposed to CS and LPS. GGWE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as the phosphorylation of inhibitor of kappa-B subunit alpha (IκBα) and nuclear factor kappa-B (NF-κB) in CS- and LPS-exposed mice. Histological examinations revealed that GGWE suppressed inflammatory cell infiltration into lung tissue compared to untreated CS- and LPS-exposed mice. In conclusion, GGWE effectively suppressed CS- and LPS-induced pulmonary inflammation. Our results indicate that GGWE may be used as a protective drug to control pulmonary inflammation diseases such as chronic obstructive pulmonary disease.


Sign in / Sign up

Export Citation Format

Share Document