scholarly journals Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Timothy D. Hoffmann ◽  
Kevin Paine ◽  
Susanne Gebhard

Abstract Background Microbially induced calcite precipitation (MICP) is an ancient property of bacteria, which has recently gained considerable attention for biotechnological applications. It occurs as a by-product of bacterial metabolism and involves a combination of chemical changes in the extracellular environment, e.g. pH increase, and presence of nucleation sites on the cell surface or extracellular substances produced by the bacteria. However, the molecular mechanisms underpinning MICP and the interplay between the contributing factors remain poorly understood, thus placing barriers to the full biotechnological and synthetic biology exploitation of bacterial biomineralisation. Results In this study, we adopted a bottom-up approach of systematically engineering Bacillus subtilis, which has no detectable intrinsic MICP activity, for biomineralisation. We showed that heterologous production of urease can induce MICP by local increases in extracellular pH, and this can be enhanced by co-expression of urease accessory genes for urea and nickel uptake, depending on environmental conditions. MICP can be strongly enhanced by biofilm-promoting conditions, which appeared to be mainly driven by production of exopolysaccharide, while the protein component of the biofilm matrix was dispensable. Attempts to modulate the cell surface charge of B. subtilis had surprisingly minor effects, and our results suggest this organism may intrinsically have a very negative cell surface, potentially predisposing it for MICP activity. Conclusions Our findings give insights into the molecular mechanisms driving MICP in an application-relevant chassis organism and the genetic elements that can be used to engineer de novo or enhanced biomineralisation. This study also highlights mutual influences between the genetic drivers and the chemical composition of the surrounding environment in determining the speed, spatial distribution and resulting mineral crystals of MICP. Taken together, these data pave the way for future rational design of synthetic precipitator strains optimised for specific applications.

2021 ◽  
Author(s):  
Timothy D Hoffmann ◽  
Kevin Paine ◽  
Susanne Gebhard

Background Microbially induced calcite precipitation (MICP) is an ancient property of bacteria, which has recently gained considerable attention for biotechnological applications. It occurs as a by-product of bacterial metabolism and involves a combination of chemical changes in the extracellular environment, e.g. pH increase, and presence of nucleation sites on the cell surface or extracellular substances produced by the bacteria. However, the molecular mechanisms underpinning MICP and the interplay between the contributing factors remain poorly understood, thus placing barriers to the full biotechnological and synthetic biology exploitation of bacterial biomineralisation. Results In this study, we adopted a bottom-up approach of systematically engineering Bacillus subtilis, which has no detectable intrinsic MICP activity, for biomineralisation. We showed that heterologous production of urease can induce MICP by local increases in extracellular pH, and this can be enhanced by co-expression of urease accessory genes for urea and nickel uptake, depending on environmental conditions. MICP can be strongly enhanced by biofilm-promoting conditions, which appeared to be mainly driven by production of exopolysaccharide, while the protein component of the biofilm matrix was dispensable. Attempts to modulate the cell surface charge of B. subtilis had surprisingly minor effects, and our results suggest this organism may intrinsically have a very negative cell surface, potentially predisposing it for MICP activity. Conclusions Our findings give insights into the molecular mechanisms driving MICP in an application-relevant chassis organism and the genetic elements that can be used to engineer de novo or enhanced biomineralisation. This study also highlights mutual influences between the genetic drivers and the chemical composition of the surrounding environment in determining the speed, spatial distribution and resulting mineral crystals of MICP. Taken together, these data pave the way for future rational design of synthetic precipitator strains optimised for specific applications.


2015 ◽  
Vol 16 (8) ◽  
pp. 811-822 ◽  
Author(s):  
Xia Niu ◽  
Ruyue Xiao ◽  
Na Wang ◽  
Ziwei Wang ◽  
Yue Zhang ◽  
...  

Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


2021 ◽  
Vol 22 (15) ◽  
pp. 8338
Author(s):  
Asad Jan ◽  
Nádia Pereira Gonçalves ◽  
Christian Bjerggaard Vaegter ◽  
Poul Henning Jensen ◽  
Nelson Ferreira

The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 576
Author(s):  
Yanru Fan ◽  
Wanfeng Li ◽  
Zhexin Li ◽  
Shaofei Dang ◽  
Suying Han ◽  
...  

The study of somatic embryogenesis can provide insight into early plant development. We previously obtained LaMIR166a-overexpressing embryonic cell lines of Larix kaempferi (Lamb.) Carr. To further elucidate the molecular mechanisms associated with miR166 in this species, the transcriptional profiles of wild-type (WT) and three LaMIR166a-overexpressing transgenic cell lines were subjected to RNA sequencing using the Illumina NovaSeq 6000 system. In total, 203,256 unigenes were generated using Trinity de novo assembly, and 2467 differentially expressed genes were obtained by comparing transgenic and WT lines. In addition, we analyzed the cleaved degree of LaMIR166a target genes LaHDZ31–34 in different transgenic cell lines by detecting the expression pattern of LaHdZ31–34, and their cleaved degree in transgenic cell lines was higher than that in WT. The downstream genes of LaHDZ31–34 were identified using Pearson correlation coefficients. Yeast one-hybrid and dual-luciferase report assays revealed that the transcription factors LaHDZ31–34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This is the first report of gene expression changes caused by LaMIR166a overexpression in Japanese larch. These findings lay a foundation for future studies on the regulatory mechanism of miR166.


2021 ◽  
Vol 10 (2) ◽  
pp. 265-276
Author(s):  
Kuidong Xu ◽  
Yi Tong ◽  
Yi Li ◽  
Jin Tao ◽  
Jianghua Li ◽  
...  

Cephalalgia ◽  
2008 ◽  
Vol 28 (8) ◽  
pp. 887-891 ◽  
Author(s):  
B de Vries ◽  
AH Stam ◽  
F Beker ◽  
AMJM van den Maagdenberg ◽  
KRJ Vanmolkot ◽  
...  

Familial hemiplegic migraine (FHM) and alternating hemiplegia of childhood (AHC) are severe neurological disorders that share clinical features. Therefore, FHM genes are candidates for AHC. We performed mutation analysis in the CACNA1A gene in a monozygotic twin pair with clinical features overlapping with both AHC and FHM and identified a novel de novo CACNA1A mutation. We provide the first evidence that a CACNA1A mutation can cause atypical AHC, indicating an overlap of molecular mechanisms causing AHC and FHM. These results also suggest that CACNA1A mutation scanning is indicated in patients with a severe neurological phenotype that includes paroxysmal (alternating) hemiplegia.


2015 ◽  
Vol 172 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Maya B Lodish ◽  
Bo Yuan ◽  
Isaac Levy ◽  
Glenn D Braunstein ◽  
Charalampos Lyssikatos ◽  
...  

ObjectiveWe have recently reported five patients with bilateral adrenocortical hyperplasia (BAH) and Cushing's syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new in-depth analysis of their cytogenetic abnormality, we attempted a better genotype–phenotype correlation of theirPRKACAamplification.DesignThis study is a case series.MethodsMolecular cytogenetic, genomic, clinical, and histopathological analyses were performed in five patients with CS.ResultsReinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus, resulting in copy number gains encompassing the entirePRKACAgene; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood, whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient,PRKACAtriplication was associated with a more severe phenotype.ConclusionsConstitutional chromosomalPRKACAgene amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occurde novo. Genomic rearrangements can be complex and can result in different copy number states of dosage-sensitive genes, e.g., duplication and triplication.PRKACAamplification can lead to variable phenotypes clinically and pathologically, both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification.


1995 ◽  
Vol 182 (6) ◽  
pp. 1997-2006 ◽  
Author(s):  
H Kishimoto ◽  
R T Kubo ◽  
H Yorifuji ◽  
T Nakayama ◽  
Y Asano ◽  
...  

Recent studies indicate that there may be functional uncoupling of the TCR-CD3 complex and suggest that the TCR-CD3 complex is composed of two parallel signal-transducing units, one made of gamma delta epsilon chains and the other of zeta chains. To elucidate the molecular mechanisms that may explain the functional uncoupling of TCR and CD3, we have analyzed their expression by using flow cytometry as well as immunochemical means both before and after stimulation with anti-TCR-beta, anti-CD3 epsilon, anti-CD2, staphylococcal enterotoxin B, and ionomycin. We present evidence that TCR physically dissociates from CD3 after stimulation of the TCR-CD3 complex. Stimulation with anti-CD3 resulted in down-modulation of TCR within 45 min whereas CD3 epsilon was still expressed on the cell surface as detected by flow cytometry. However, the cell surface expression of TCR and CD3 was not affected when cells were stimulated with anti-TCR-beta under the same conditions. In the case of anti-CD3 treatment of T cells, the TCR down-modulation appeared to be due to the internalization of TCR, as determined by immunoelectron microscopy. Immunochemical analysis of cells after stimulation with either anti-TCR or anti-CD3 mAbs revealed that the overall protein levels of TCR and CD3 were similar. More interestingly, the dissociation of the TCR-CD3 complex was observed with both treatments and occurred in a manner that the TCR and the associated TCR-zeta chain dissociated as a unit from CD3. These results provide the first report of physical dissociation of TCR and CD3 after stimulation through the TCR-CD3 complex. The results also suggest that the signal transduction pathway triggered by TCR may differ from that induced by CD3.


Sign in / Sign up

Export Citation Format

Share Document