Gene editing of peripheral blood T cells for cancer immunotherapy

2017 ◽  
Vol 3 (1) ◽  
pp. 43-46
Author(s):  
Avery Posey
2021 ◽  
Author(s):  
Moataz Dowaidar

T cells following genome editing and transformation might be detectable in peripheral blood and tumor tissues for a long time, even more than a year. The types and diversity of T-cells in peripheral blood and tumor tissues changed following transfusion of genetically modified T-cells, and some highly suspected T-cells targeting cancer cells grew, increasing the proportion of such cells. Moreover, after getting genetically engineered T cells, anticancer cytokine secretion increased. T cells changed by gene editing have certain functions, at least from an immunological standpoint. The first clinical research using the CRISPR–Cas9 gene editing method for cancer resistance is more complicated: Using CRISPR–Cas9 gene editing technology to concurrently knock out, amplify, activate and reinfuse three genes in human immune cells. This therapeutic strategy is more demanding, because the changed immune cells have a wider target scope. The data suggest that the efficacy of gene editing in immune cells was 15–45%, and the modified cells could survive long in the peripheral blood and tumor tissues of patients. After three or four months, some T-cells became central T-cells. These encouraging findings pave the way for future experimental cancer research utilizing CRISPR technology.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Seyed Mohammad Miri ◽  
Elham Tafsiri ◽  
William Chi Shing Cho ◽  
Amir Ghaemi

Abstract Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called “adoptive cell transfer”, or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell receptor (TCR) or chimeric antigen receptor (CAR), through multiplex genome engineering using Cas nucleases. The robust potential of CRISPR-Cas in preparing the building blocks of ACT immunotherapy has broaden the application of such therapies and some of them have gotten FDA approvals. Here, we have collected the last investigations in the field of immuno-oncology conducted in partnership with CRISPR technology. In addition, studies that have addressed the challenges in the path of CRISPR-mediated cancer immunotherapy, as well as pre-treatment applications of CRISPR-Cas have been mentioned in detail.


2020 ◽  
Author(s):  
Rafet Basar ◽  
Nadima Uprety ◽  
Emily Ensley ◽  
May Daher ◽  
Kimberly Klein ◽  
...  

SUMMARYAdoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1292-1292
Author(s):  
Silke Landmeier ◽  
Sibylle Pscherer ◽  
Bodo Eing ◽  
Cliona M. Rooney ◽  
Heribert Juergens ◽  
...  

Abstract Adoptive transfer of gene-engineered T cells expressing tumor antigen-specific chimeric receptors (chRec) is a promising tool in cancer immunotherapy. A major limitation is the failure of chRec to induce proliferative T cell responses, resulting in a rapid loss of function. To provide a strategy for reexpansion of tumor-reactive T cells in vivo, we generated dual-specific T cells that respond to varicella zoster virus while also possessing chRec-mediated tumor reactivity. We expanded VZV-specific cytotoxic T cell lines (VZV-CTL) from four seropositive donors by culturing peripheral blood-derived T cells with lysates extracted from VZV-infected fibroblasts. Repeated stimulation with VZV lysates resulted in efficient and continued expansion for 10–12 weeks. >1x109 T cells were routinely obtained from a starting number of 1x106 peripheral blood T cells. The T cells displayed a mainly CD3+CD4+ (90±5%) phenotype. ELISPOT assays showed specific, MHC class II-restricted IFN-γ release in response to CD40-activated B cells expressing the viral glycoproteins gE and IE62. VZV-CTL belong to a non-regulatory effector T cell subset, shown by their failure to exert antiproliferative effects against cocultured autologous T cells and lack of Foxp3 expression. Retroviral transduction with chRec recognizing the tumor ganglioside antigen GD2 (14.G2a-ζ) and the B cell lineage antigen CD19 (CD19-ζ) resulted in receptor surface expression on 29–74% and 39–45% of cells, respectively. Gene-modified VZV-CTL efficiently recognized antigen-expressing tumor targets in an MHC-independent manner, as demonstrated by antigen-specific secretion of IFN-γ in response to coincubation with GD2-expressing tumor targets. Furthermore, chRec-transduced VZV-CTL performed potent and antigen-specific tumor cytolysis. Antibody blocking experiments revealed that tumor cells were lysed in a granulysin-dependent manner. ChRec-transduced CD3+CD4+ cytolytic VZV-CTL may provide a source of highly potent tumor-reactive cells for adoptive immunotherapy cancer. Endogenous viral reactivations or administration of booster doses of varicella vaccine may lead to survival of these tumor-reactive T cells for prolonged periods of time in vivo.


2001 ◽  
Vol 167 (9) ◽  
pp. 4828-4837 ◽  
Author(s):  
Rafael E. Curiel ◽  
Carmen S. Garcia ◽  
Lubna Farooq ◽  
Martin F. Aguero ◽  
Igor Espinoza-Delgado

Author(s):  
Xuejin Ou ◽  
Qizhi Ma ◽  
Wei Yin ◽  
Xuelei Ma ◽  
Zhiyao He

In recent years, immunotherapy has showed fantastic promise in pioneering and accelerating the field of cancer therapy and embraces unprecedented breakthroughs in clinical practice. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as a versatile gene-editing technology, lays a robust foundation to efficiently innovate cancer research and cancer therapy. Here, we summarize recent approaches based on CRISPR/Cas9 system for construction of chimeric antigen receptor T (CAR-T) cells and T cell receptor T (TCR-T) cells. Besides, we review the applications of CRISPR/Cas9 in inhibiting immune checkpoint signaling pathways and highlight the feasibility of CRISPR/Cas9 based engineering strategies to screen novel cancer immunotherapy targets. Conclusively, we discuss the perspectives, potential challenges and possible solutions in this vivid growing field.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 48-49
Author(s):  
Hans Jiro Jiro Becker ◽  
Masatoshi Sakurai ◽  
Satoshi Yamazaki

Background The application of gene editing in hematopoietic stem cells (HSCs) holds great promise for the treatment of genetic blood disorders such as severe combined immunodeficiency (SCID). However, one critical bottleneck is that edited HSCs cannot easily be expanded ex vivo without concomitant loss of self-renewal. This limitation excludes the possibility of growing functional HSCs from single cells, which would enable the selection of desired clones based on sequence verification of relevant on- and off-target modifications. We recently reported on a defined, serum-free, polymer-based culture protocol that selectively facilitates in vitro proliferation of murine HSCs [1]. In the current study, we aimed to expand functional, CRISPR/Cas9-edited HSCs from bulk cell populations as well as from cloned, single HSCs to generate grafts capable of hematopoietic reconstitution. We show that HSCs from the murine PrkdcSCID model, which harbors a point mutation in the Prkdc gene leading to B and T cell deficiency, can be edited and expanded to correct the immunodeficient phenotype after transplantation. Furthermore, we demonstrate that single, gene-edited HSCs can be cloned and expanded using our system to generate functional HSCs for SCT. Methods CD150+CD201+c-Kit+Lin- (CD150+CD201+KL) HSCs from C.B17/Icr-PrkdcSCID (SCID) mice were isolated and cultured in polymer-based medium supplemented with recombinant cytokines. Gene editing was performed with Cas9 protein and appropriate gRNAs delivered as ribonucleoprotein complexes (RNPs) via electroporation. HDR donors were supplied as single-strand oligonucleotides (ssODNs). Stem cell transplantations (SCTs) were carried out after lethal irradiation with 2.5 Gy. Results To demonstrate that edited HSCs can be expanded as a bulk population and efficiently engraft to correct a disease phenotype, SCID mouse-derived donor HSCs were subjected to Cas9-mediated gene editing at the Prkdc locus (Fig. 1a). Total cells and primitive CD201+CD150+cKit+Lin-(KL) cells expanded 70- and 10-fold, respectively, over seven days after which bulk populations were transplanted into SCID mice. Inference of CRISPR edits (ICE) analysis performed at the time of SCT indicated an HDR frequency of 29%±10%. The emergence of B and T cells in peripheral blood samples was observed from four weeks after transplantation (B220+: 21±7%, CD4+: 27±4%, CD8+: 4±1%; Fig 1b). We also confirmed the presence of B and T cells in the spleen and thymus of transplanted mice. Immunization experiments showed immunoglobulin titer levels equal to healthy control mice after challenge with a T-dependent antigen. We conclude that expansion and autologous SCT of edited HSCs restores a functional B and T cell compartment in SCID mice. We next inquired whether our system could be used to expand single, edited HSC clones. To this end, we sorted single, edited CD150+CD201+KL clones by flow cytometry and expanded them for two weeks. Genomic DNA was sampled from growing colonies and editing outcomes at the Prkdc locus were individually assessed to screen for corrected HSCs (Fig. 2a). After transplantation of the selected clones, B and T cells could be detected starting from 4 weeks and 8 weeks, respectively, in peripheral blood (Fig. 2b), suggesting that functional HSCs could be expanded from edited clones. Interestingly, we found that engraftment was associated with high expression of EPCR in the CD150+KL populations of single cell-derived HSC colonies. Conclusion We have shown that functional, Cas9-edited SCID and wildtype HSCs can be expanded in our defined culture system. Corrected SCID HSCs contributed to hematopoietic reconstitution of B and T lineages conferring restored immunity in vivo. Furthermore, we were able to generate transplantable HSCs from single edited clones. This approach has important applications in HSC gene editing and has potential to overcome marker-based selection strategies since individual clones can be interrogated and selected for targeted gene editing events prior to transplantation. Our expansion system will serve as a tool to further the development of targeted gene therapeutic strategies. [1] Wilkinson et al., Nature 571, 117-121 (2019) Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3490-3490 ◽  
Author(s):  
Yuchi Honaker ◽  
Yufei Xiang ◽  
Logan Fisher ◽  
Karen Sommer ◽  
Troy R. Torgerson ◽  
...  

Abstract Regulatory T cells (Treg) are distinct among T cell subtypes, having the primary role of suppressing adaptive immune responses. The importance of these cells in immune self-tolerance is underscored by the genetically inherited syndrome IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked), which is caused by an inactivating mutation in FOXP3. FOXP3 is a transcription factor that is a determinant of regulatory T cell function. Patients with IPEX syndrome suffer from the rapid and severe onset of multi-organ autoimmunity, including severe enteropathy, Type I diabetes, thyroiditis, skin inflammation and other features. In mouse models of IPEX, neonatal transplantation of wild-type Tregs is sufficient to prevent the development of disease. Less-severe Treg defects have also been implicated in the etiology of a variety of prevalent autoimmune diseases. It is possible that the pivotal role for Tregs in self-tolerance could be exploited clinically to improve therapies for autoimmunity and other diseases of tolerance. However, the use of autologous ex vivo expanded Treg as a clinical cell therapy is problematic: Tregs are present in low numbers in the peripheral blood, they expand slowly in culture ex vivo, and they may lack antigen specificities necessary for efficient suppression in specialized tissues. They may also down-regulate FOXP3 expression and lose functional activity in vivo in the setting of chronic inflammation. Additionally, autologous Tregs from patients with autoimmune disease may exhibit cell intrinsic dysfunction, while IPEX patients do not even have Tregs. To overcome these issues, we developed a gene editing approach to enforce stable expression of FOXP3 in primary human CD4+ peripheral blood T cells. CRISPR/Cas9 ribonucleoprotein and an AAV6-delivered donor template were developed to target a MND promoter-FOXP3 cDNA expression cassette (linked to a cell surface LNGFR tag by a 2A ribosome skip peptide) to the FOXP3 locus by homology directed repair (HDR). Highly efficient HDR rates were achieved across multiple donors (~34%; 5 donors in 9 experiments). For therapy of IPEX caused by FOXP3 missense mutations, integration of the functional coding sequence simultaneously abolishes endogenous FOXP3 expression. Following gene editing, expression of FOXP3 was sufficient to drive Treg-like phenotypic changes, including the up-regulation of CD25 and inhibitory receptors and down-regulation of CD127 and inflammatory cytokines. Further, consistent with the translatability of this approach into clinical manufacturing, FOXP3+ cells could be enriched to >90% purity by a simple LNGFR antibody column and expanded 20-fold within one week. Importantly, transfer of these edited Treg-like cells (edTreg) to NOD-scid-IL2Rγ-/- mice prevented xeno-graft vs. host disease (xeno-GvHD) mediated by co-transferred autologous effector T cells; xeno-GvHD protection correlated with long-term survival of the edTregs, and a marked reduction in effector T cell expansion and tissue infiltration. These data support the development of edited regulatory T cells for the treatment of IPEX and other autoimmune disease. Disclosures Scharenberg: Generation Bio: Equity Ownership; Casebia Therapeutics: Employment; Alpine Immune Sciences: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document