scholarly journals The novel circ_0028171/miR-218-5p/IKBKB axis promotes osteosarcoma cancer progression

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Pan ◽  
Jun Zhang ◽  
Benseng Tang ◽  
Li Jing ◽  
Bing Qiu ◽  
...  

Abstract Background Recently, it has been demonstrated that circular RNA (circRNA) contributes to the production and progression in human cancer. However, the specific function and underlying mechanism of circ_0028171 in osteosarcoma (OS) still remain largely unclear and require to be investigated. Methods In our study, we confirmed differentially expressed circRNAs by microarray analysis in normal bone cells vs. OS cell lines. The expression of circ-0028171 in OS was measured by qRT-PCR. Nuclear-cytoplasmic fractionation was employed to identify the localization of circ-0028171, and RNase R and actinomycin D treatment were used to prove its circular characteristic. In vitro experiments, such as CCK-8 method, cell count, cell colony formation, transwell migration and invasion assays, and in vivo tumor models were adopted to evaluate the effect of circ_0028171. Further, luciferase reporter, RIP and RNA pull-down assays were conducted to confirm the binding sites of circ_0028171 with miR-218-5p. Results We found that circ_0028171 displayed a remarkably higher expression in both OS tissues and cell lines. Circ_0028171 mainly located in the cytoplasm as a stable cyclic transcript. Knockdown of circ_0028171 suppressed OS tumor growth in vitro and in vivo, while up-regulated circ_0028171 remarkably enhanced cell proliferation, migration and invasion abilities in OS. Several mechanistic experiments revealed that circ_0028171 served as a sponge of miR-218-5p to increase IKBKB expression. Conclusions our research reveals that circ_0028171 might promote the malignant behavior of OS tissues through miR-218-5p/IKBKB axis, which could be a potential novel marker for early diagnosis of OS.

2015 ◽  
Vol 37 (5) ◽  
pp. 1956-1966 ◽  
Author(s):  
Shiping Liu ◽  
Peng Feng

Background/Aims: Increasing evidence has shown that miR-203 plays important role in human cancer progression. However, little is known about the function of miR-203 in osteosarcoma (OS). Methods: The expression of miR-203 in OS tissues and cell lines were examined by qRT-PCR. The biological role of miR-20 in OS cell proliferation was examined in vitro and in vivo. The targets of miR-203 were identified by a luciferase reporter gene assay. Results: miR-203 was down regulated in OS tissues and cell lines; decreased miR-203 was associated with a poor overall survival in OS patients. Restoration of miR-203 expression reduced cell growth in vitro and suppressed tumorigenicity in vivo. In contrast, inhibition of miR-203 stimulated OS cell growth both in vitro and in vivo. In addition, TANK binding kinase 1 (TBK1) was identified as a direct target of miR-203; overexpression of TBK1 partly reversed the suppressive effects of miR-203. Furthermore, TBK1 was found up-regulated and inversely correlated with miR-203 in OS tissues. Conclusion: Taken together, these findings suggest that miR-203 acts as a tumor suppressor via regulation of TBK1 expression in OS progression, and miR-203 may be a promising therapeutic target for OS.


2020 ◽  
pp. 1-11
Author(s):  
Dengguo Fan ◽  
Changjiang Wang ◽  
Deyuan Wang ◽  
Ning Zhang ◽  
Tao Yi

BACKGROUND: Circular RNA (circRNA) is a class of non-coding RNA that is vital for regulating gene expression and biological functions. Mounting studies demonstrate that circRNA is crucial for human cancer development. However, the role of circ_0000039 in gastric cancer (GC) remains uncertain. METHODS: Normal human gastric tissues and GC tissue samples were collected, and quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression levels of circ_0000039, miR-1292-5p, and DEK. GC cell lines with overexpression and low expression of circ_0000039 were constructed. Cell counting kit-8 (CCK-8), scratch healing and Transwell experiments were used to assess the function of circ_0000039 on the proliferation, migration and invasion of GC cells. Bioinformatics analysis and dual-luciferase reporter assays were employed to detect the targeting relationship between circ_0000039 and miR-1292-5p. RESULTS: Circ_0000039 expression was up-regulated in GC tissues and cell lines, and it was significantly related with poor differentiation of tumor tissues. In addition, circ_0000039 overexpression enhanced the proliferation, migration and invasion of GC cells, while circ_0000039 depletion inhibited these malignant biological behaviors. In terms of mechanism, it was found that circ_0000039 promoted the proliferation and progression of GC cells by adsorbing miR-1292-5p and up-regulating the expression of DEK. CONCLUSION: Circ_0000039 is a new oncogenic circRNA in GC, which regulates the miR-1292-5p/DEK axis to modulate the malignant biological behaviors of GC.


Author(s):  
Kunpeng Liu ◽  
Yuhua Mou ◽  
Xiufang Shi ◽  
Tingkun Liu ◽  
Zhanfeng Chen ◽  
...  

Aim: Colorectal cancer (CRC) has developed into the third leading reason of cancer-associated death worldwide. Studies has confirmed that circular RNAs (circRNAs) sponge microRNAs (miRNAs) to regulate the function of downstream genes. This study aimed to expound the underlying mechanism of circRNA 100146 in CRC. Methods: The expression of circRNA 100146, miR-149 and high mobility group A2 (HMGA2) was detected by quantitative real time PCR (RT-qPCR). A series of bio-functional effects (cell viability, apoptosis, migration/invasion) were evaluated by methyl thiazolyl tetrazolium (MTT), flow cytometry, transwell. Protein level was measured by Western blot assay. The xenograft model was established for in vivo experiments. The interactions among circRNA 100146, miR-149 and HMGA2 were evaluated by dual-luciferase reporter assay, RNA immunoprecipitation assays, or RNA pulldown assay. Results: CircRNA 100146 was upregulated in CRC tissues and cells. CircRNA 100146 knockdown inhibited cell proliferation, promoted apoptosis and suppressed migration and invasion in vitro, and impeded tumor growth in vivo. Also, miR-149 was negalitively regulated by circRNA 100146, and targeted to HMGA2 and mediated its expression. Moreover, miR-149 interference abrogated the activities of silenced circRNA 100146 in proliferation, apoptosis, migration and invasion. Furthermore, HMGA2 overexpression abated the effects above caused by circRNA 100146 silencing, while the mutant on miR-149 binding sites in HMGA2 3’UTR lead to it losing this ability. Conclusion: CircRNA 100146 knockdown repressed proliferation, enhanced apoptosis and hindered migration and invasion in SW620 and SW480 cells through targeting miR-149/HMGA2 axis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Yang ◽  
Yong-ning Zhou ◽  
Miao-miao Zeng ◽  
Nan Zhou ◽  
Bin-sheng Wang ◽  
...  

BackgroundCircular RNAs (circRNAs) are closely associated with the occurrences and progress of gastric cancer (GC). We aimed to delve into the function and pathological mechanism of Circular RNA-0002570 (circ-0002570) in GC progression.MethodsCircRNAs differentially expressed in GC were screened using bioinformatics technology. The expression of circ-0002570 was detected in GC specimens and cells via qRT-PCR, and the prognostic values of circ-0002570 were determined. The functional roles of circ-0002570 on proliferation, migration, and invasion in GC cells were explored in vitro and in vivo. Interaction of circ-0002570, miR-587, and VCAN was confirmed by dual-luciferase reporter assays, Western blotting, and rescue experiments.ResultsCirc-0002570 expression was distinctly increased in GC tissues compared to adjacent normal specimens, and GC patients with higher circ-0002570 expressions displayed a short survival. Functionally, knockdown of circ-0002570 resulted in the inhibition of cell proliferation, migration, and invasion, and suppressed tumor growth in vivo. Mechanistically, miR-587 was sponged by circ-0002570. VCAN expression in NSCLC was directly inhibited by miR-587. Overexpression of circ-0002570 prevented VCAN from miR-587-mediated degradation and thus facilitated GC progression.ConclusionThe circ-0002570-miR-587-VCAN regulatory pathway promoted the progression of GC. Our findings provided potential new targets for the diagnosis and therapy of GC.


Author(s):  
Chen Du ◽  
Caihong Lv ◽  
Yue Feng ◽  
Siwen Yu

Abstract Background Accumulating evidence supports that lysine-specific demethylase 5 (KDM5) family members act as oncogenic drivers. This study was performed to elucidate the potential effects of KDM5A on prostate cancer (PCa) progression via the miR-495/YTHDF2/m6A-MOB3B axis. Methods The expression of KDM5A, miR-495, YTHDF2 and MOB3B was validated in human PCa tissues and cell lines. Ectopic expression and knockdown experiments were developed in PCa cells to evaluate their effects on PCa cell proliferation, migration, invasion and apoptosis. Mechanistic insights into the interaction among KDM5A, miR-495, YTHDF2 and MOB3B were obtained after dual luciferase reporter, ChIP, and PAR-CLIP assays. Me-RIP assay was used to determine m6A modification level of MOB3B mRNA in PCa cells. Mouse xenograft models of PCa cells were also established to monitor the tumor growth. Results KDM5A was highly expressed in human PCa tissues and cell lines. Upregulated KDM5A stimulated PCa cell proliferation, migration and invasion, but reduced cell apoptosis. Mechanistically, KDM5A, as a H3K4me3 demethylase, bound to the miR-495 promoter, which led to inhibition of its transcription and expression. As a target of miR-495, YTHDF2 could inhibit MOB3B expression by recognizing m6A modification of MOB3B mRNA and inducing mRNA degradation. Furthermore, KDM5A was found to downregulate MOB3B expression, consequently augmenting PCa cell proliferation, migration and invasion in vitro and promoting tumor growth in vivo via the miR-495/YTHDF2 axis. Conclusion In summary, our study highlights the potential of histone demethylase KDM5A activity in enhancing PCa progression, and suggests KDM5A as a promising target for PCa treatment.


2021 ◽  
Vol 16 (1) ◽  
pp. 495-510
Author(s):  
Jie Zhang ◽  
Zhang Zhang

Abstract Background The purpose of the study was to explore the precise parts of circ_0066147 (circular RNA [circRNA] scm-like with four mbt domains 1, circSFMBT1) in pancreatic cancer (PC) progression. Methods Ribonuclease R assay was used to confirm the stability of circ_0066147. circ_0066147, miR-326 and E2F transcription factor 2 (E2F2) expression levels was detected by quantitative reverse-transcription polymerase chain reaction or Western blot. Cell proliferation, apoptosis, migration and invasion abilities were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, flow cytometry, wound-healing and transwell assays, respectively. Targeted relationships among circ_0066147, miR-326 and E2F2 were verified by the dual-luciferase reporter or RNA pull-down assay. Results circ_0066147 expression was upregulated in PC tissues and cells. circ_0066147 knockdown inhibited PC cell proliferation, migration, invasion and enhanced apoptosis in vitro, as well as weakened tumor growth in vivo. Mechanistically, circ_0066147 directly targeted miR-326 and circ_0066147 modulated E2F2 expression by miR-326. miR-326 mediated the regulation of circ_0066147 in PC cell behaviors in vitro. Furthermore, E2F2 was a functional target of miR-326 in modulating PC cell behaviors in vitro. Conclusion circ_0066147 regulated PC malignant progression in part depending on the miR-326/E2F2 axis, illuminating circ_0066147 was a potential prognostic marker and therapeutic target for PC management.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


Sign in / Sign up

Export Citation Format

Share Document