scholarly journals MiR-937-3p promotes metastasis and angiogenesis and is activated by MYC in lung adenocarcinoma

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zijian Ma ◽  
Ganyi Chen ◽  
Yiqian Chen ◽  
Zizhang Guo ◽  
Hao Chai ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) accounts for more than half of all NSCLC cases in most countries. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear. Methods miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell migration, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tube formation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vivo experiments were performed on male NOD/SCID nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA. Result In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3′-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region. Conclusions Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, thereby promoting the progress of LUAD. We speculate that miR-937-3p can be used as a therapeutic target and potential biomarker for LUAD.

2021 ◽  
Author(s):  
Zijian Ma ◽  
Ganyi Chen ◽  
Yiqian Chen ◽  
Zizhang Guo ◽  
Hao Chai ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) is the majority of NSCLC. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear.Methods: miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tubeformation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vitro experiments were performed on male BALB/c nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA.Result: In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3'-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region.Conclusion: Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, which is a therapeutic target and potential biomarker for LUAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


2020 ◽  
Author(s):  
Xinglong Dai ◽  
Jianjun Liu ◽  
Xiong Guo ◽  
Anqi Cheng ◽  
Xiaoya Deng ◽  
...  

Background: Mounting evidence has displayed critical roles of circular RNAs (circRNAs) in multiple cancers. The underlying mechanisms by which circFGD4 contributed to gastric cancer (GC) are still unclear. Methods: The levels and clinical values of circFGD4 in GC patients were detected and analysed by quantitative real-time PCR. The biological roles of circFGD4 in GC were assessed in vitro and in vivo experiments. Dual-luciferase reporter, fluorescence in situ hybridization, RNA immunoprecipitation, biotin-coupled RNA pull-down, and TOP/Flash and FOP/Flash reporter gene assays were employed to evaluate the effects of circFGD4 on miR-532-3p-mediated adenomatous polyposis coli (APC)/β-catenin signalling in GC cells. Results: circFGD4 expression was down-regulated the most in human GC tissues and cell lines. Low expression of circFGD4 was correlated with poor tumour differentiation, lymphatic metastasis, and poor prognosis of GC patients. circFGD4 suppressed GC cell viability, colony formation, migration, induced epithelial-mesenchymal transition (EMT) and tumorigenesis and metastasis in vivo. Next, we validated that circFGD4 acted as a sponge of miR-532-3p to relieve the tumour-promoting effects of miR-532-3p on its target APC. The mechanistic analysis demonstrated that the circFGD4 suppressed GC cell viability, migration, and EMT by modulating the miR-532-3p/APC axis to inactivate the β-catenin signalling. Conclusion: circFGD4 suppressed GC progression through sponging miR-532-3p and enhancing APC expression to inactivate the β-catenin signalling. Thus circFGD4 provides a novel potential biomarker and valuable therapeutic strategy for GC.


Author(s):  
Lili Zhao ◽  
Yao Zhang ◽  
Jiaoxia Liu ◽  
Wei Yin ◽  
Dan Jin ◽  
...  

MicroRNAs (miRNAs) are short endogenous noncoding RNAs that frequently play vital roles in many cancer types. Herein we demonstrated that miR-185 was remarkably downregulated in NSCLC tissues compared with adjacent normal tissues. A lower level of miR-185 was associated with lymph node metastasis. Functional assays showed that upregulation of miR-185 inhibited the proliferation, colony formation, and invasion capacities of NSCLC cells in vitro. Furthermore, we found that miR-185 suppressed the epithelial‐mesenchymal transition (EMT) process. Bioinformatics analysis and luciferase reporter gene assays revealed that Kruppel-like factor 7 (KLF7) was the target of miR-185. Overexpression of miR-185 reduced the expression of KLF7 in NSCLC cells. Upregulation of KLF7 partly neutralized the inhibitory effects of miR-185 on the proliferation and invasion of NSCLC. Additionally, we confirmed that miR-185 suppressed the tumor growth of NSCLC A549 cells in vivo. Taken together, these results demonstrate that miR-185 acts as a suppressor by targeting KLF7 in NSCLC.


Author(s):  
Yu Zhang ◽  
Hailin Liu ◽  
Qiang Zhang ◽  
Zhenfa Zhang

Lung adenocarcinoma (LUAD) is a common type of malignancy of lung cancers. Long intergenic non-coding RNAs (lincRNAs) have emerged as crucial regulators of various cancers, including LUAD. LINC01006 is a newly discovered lncRNA whose function in LUAD remains to be explored. This study is to explore the role of LINC01006 in LUAD. Quantitative real-time PCR (RT-qPCR) analysis and western blot were used to determine the expressions and protein levels respectively. Functional assays and animal experiments investigated the role of LINC01006 both in vivo and in vitro. Moreover, TOP/FOP assay was performed to detect the activation of Wnt/β-catenin signaling pathway. The interaction between LINC01006 and miR-129-2-3p/catenin beta 1 (CTNNB1) was explored by RNA binding protein immunoprecipitation (RIP), RNA pull down, luciferase reporter assays and rescue experiments. According to the results, LINC01006 was highly expressed in LUAD tissues and cell lines. LINC01006 knockdown significantly suppressed cell proliferative, migratory, epithelial-mesenchymal transition (EMT) capacities and the tumor development. Moreover, LINC01006 enhanced CTNNB1 via sequestering miR-129-2-3p and activated Wnt/β-catenin pathway in LUAD. Overall, LINC01006 promotes LUAD development via activating Wnt/β-catenin pathway, implying that LINC01006 might be a promising biomarker for LUAD treatment.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Nan Wang ◽  
Yong Li ◽  
Jianhong Zhou

MicroRNA-31 (miR-31) functions as tumor suppressors or oncogenes that are involved in tumor behavior. However, the function of miR-31 in cervical carcinogenesis remains unclear. The aim of this study was to validate the potential role of miR-31 and BRCA1-associated protein-1 (BAP1) on regulating epithelial-mesenchymal transition (EMT) in cervical cancer. In the present study, qRT-PCR assay revealed that the expression of miR-31 was upregulated in human cervical cancer cells and clinical tissues. Results of wound healing and cell migration assay revealed that knockdown of miR-31 inhibited cell metastasis and migration. Bioinformatic and dual-luciferase reporter gene assay showed that BAP1 was the direct target of miR-31. Furthermore, the results revealed that miR-31 promoted proliferation and EMT in cervical cancer cells and accelerated the development of tumor growth in vivo xenograft experiment by inhibiting BAP1 expression. Overall, these results highlight an important role of miR-31 functioning as an oncomir which could promote EMT in cervical cancer via downregulating BAP1 expression. Thus, downregulation of miR-31 could be a novel approach for the molecular treatment of cervical cancers and other malignancies.


Author(s):  
Samatha Bhat ◽  
Shama Prasada Kabekkodu ◽  
Divya Adiga ◽  
Rayzel Fernandes ◽  
Vaibhav Shukla ◽  
...  

AbstractCervical cancer (CC) is a leading cause of cancer-related death among women in developing countries. However, the underlying mechanisms and molecular targets for therapy remain to be fully understood. We investigated the epigenetic regulation, biological functions, and clinical utility of zinc-finger protein 471 (ZNF471) in CC. Analysis of cervical tissues and five independent public datasets of CC showed significant hypermethylation of the ZNF471 gene promoter. In CC cell lines, promoter DNA methylation was inversely correlated with ZNF471 expression. The sensitivity and specificity of the ZNF471 hypermethylation for squamous intraepithelial lesion (SIL) vs tumor and normal vs tumor was above 85% with AUC of 0.937. High methylation and low ZNF471 expression predicted poor overall and recurrence-free survival. We identified −686 to +114 bp as ZNF471 promoter, regulated by methylation using transient transfection and luciferase assays. The promoter CpG site methylation of ZNF471 was significantly different among cancer types and tumor grades. Gal4-based heterologous luciferase reporter gene assays revealed that ZNF471 acts as a transcriptional repressor. The retroviral mediated overexpression of ZNF471 in SiHa and CaSki cells inhibited growth, proliferation, cell migration, invasion; delayed cell cycle progression in vitro by increasing cell doubling time; and reduced tumor growth in vivo in nude mice. ZNF471 overexpression inhibited key members of epithelial-mesenchymal transition (EMT), Wnt, and PI3K-AKT signaling pathways. ZNF471 inhibited EMT by directly targeting vimentin as analyzed by bioinformatic analysis, ChIP-PCR, and western blotting. Thus, ZNF471 CpG specific promoter methylation may determine the prognosis of CC and could function as a potential tumor suppressor by targeting EMT signaling.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Zhongjian Yu ◽  
Xiongjie Zhu ◽  
Ying Li ◽  
Min Liang ◽  
Meijun Liu ◽  
...  

AbstractLung adenocarcinoma (LUAD) has high incidence and mortality rates worldwide; however, its detailed molecular pathology remains unclear. Although circRNAs have gradually been identified as molecules that are differentially expressed in tumors and play key roles in tumor progression, their role in LUAD is poorly understood. Through microarray analysis, we obtained the circRNA expression profile of LUAD and found that circ-HMGA2 (hsa_circ_0027446), a novel RNA, is highly expressed in LUAD. The high expression of circ-HMGA2 was further verified in 36 paired LUAD and adjacent normal tissues. Functionally, circ-HMGA2 promoted LUAD cell metastasis in vitro and in vivo. The luciferase reporter assay and FISH results showed that circ-HMGA2 interacts with miR-1236-3p and that miR-1236-3p interacts with ZEB1. In addition, miR-1236-3p was expressed at low levels in LUAD, inhibited LUAD cell metastasis, and suppressed the function of circ-HMGA2. ZEB1 is an EMT-promoting transcription factor. The PCR and WB analysis results showed that circ-HMGA2 promotes both ZEB1 expression and EMT. MiR-1236-3p had the opposite effect, reversing the promotive effect of circ-HMGA2 on EMT. In summary, circ-HMGA2 promotes LUAD cell metastasis through the miR-1236-3p/EMT axis, indicating that it could be a therapeutic target in LUAD.


2018 ◽  
Author(s):  
Xuechen Yu ◽  
Yuanzhen Zhang ◽  
Wei Zhang ◽  
Huijun Chen

AbstractThis study investigated the effects of microRNA-200c (miR-200c) and cofilin-2 (CFL2) in regulating epithelial-mesenchymal transition (EMT) in ovarian cancer. The level of miR-200c was lower in invasive SKOV3 cells than that in non-invasive OVCAR3 cells, whereas CFL2 showed the opposite trend. Bioinformatics analysis and dual-luciferase reporter gene assays indicated that CFL2 was a direct target of miR-200c. Furthermore, SKOV3 and OVCAR3 cells were transfected with miR-200c mimic or inhibitor, pCDH-CFL2 (CFL2 overexpression), or CFL2 shRNA (CFL2 silencing). MiR-200c inhibition and CFL2 overexpression resulted in elevated levels of both CFL2 and vimentin while reducing E-cadherin expression. They also increased ovarian cancer cell invasion and migrationin vitroandin vivoand increased the tumor volumes. Conversely, miR-200c mimic and CFL2 shRNA exerted the opposite effects as those aforementioned. In addition, the effects of pCDH-CFL2 and CFL2 shRNA were reversed by the miR-200c mimic and inhibitor, respectively. This finding suggested that miR-200c could be a potential tumor suppressor by targeting CFL2 in the EMT process.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


Sign in / Sign up

Export Citation Format

Share Document