scholarly journals Machine learning associated with respiratory oscillometry: a computer-aided diagnosis system for the detection of respiratory abnormalities in systemic sclerosis

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Domingos S. M. Andrade ◽  
Luigi Maciel Ribeiro ◽  
Agnaldo J. Lopes ◽  
Jorge L. M. Amaral ◽  
Pedro L. Melo

Abstract Introduction The use of machine learning (ML) methods would improve the diagnosis of respiratory changes in systemic sclerosis (SSc). This paper evaluates the performance of several ML algorithms associated with the respiratory oscillometry analysis to aid in the diagnostic of respiratory changes in SSc. We also find out the best configuration for this task. Methods Oscillometric and spirometric exams were performed in 82 individuals, including controls (n = 30) and patients with systemic sclerosis with normal (n = 22) and abnormal (n = 30) spirometry. Multiple instance classifiers and different supervised machine learning techniques were investigated, including k-Nearest Neighbors (KNN), Random Forests (RF), AdaBoost with decision trees (ADAB), and Extreme Gradient Boosting (XGB). Results and discussion The first experiment of this study showed that the best oscillometric parameter (BOP) was dynamic compliance, which provided moderate accuracy (AUC = 0.77) in the scenario control group versus patients with sclerosis and normal spirometry (CGvsPSNS). In the scenario control group versus patients with sclerosis and altered spirometry (CGvsPSAS), the BOP obtained high accuracy (AUC = 0.94). In the second experiment, the ML techniques were used. In CGvsPSNS, KNN achieved the best result (AUC = 0.90), significantly improving the accuracy in comparison with the BOP (p < 0.01), while in CGvsPSAS, RF obtained the best results (AUC = 0.97), also significantly improving the diagnostic accuracy (p < 0.05). In the third, fourth, fifth, and sixth experiments, different feature selection techniques allowed us to spot the best oscillometric parameters. They resulted in a small increase in diagnostic accuracy in CGvsPSNS (respectively, 0.87, 0.86, 0.82, and 0.84), while in the CGvsPSAS, the best classifier's performance remained the same (AUC = 0.97). Conclusions Oscillometric principles combined with machine learning algorithms provide a new method for diagnosing respiratory changes in patients with systemic sclerosis. The present study's findings provide evidence that this combination may help in the early diagnosis of respiratory changes in these patients.

2021 ◽  
Author(s):  
Domingos Andrade ◽  
Luigi Ribeiro ◽  
Agnaldo Lopes ◽  
Jorge Amaral ◽  
Pedro Lopes de Melo

Abstract BackgroundThe use of machine learning (ML) methods would improve the diagnosis of respiratory changes in systemic sclerosis (SSc). This paper evaluates the performance of several ML algorithms associated with the respiratory oscillometry analysis to aid in the diagnostic of respiratory changes in SSc. We also find out the best configuration for this task.MethodsOscillometric and spirometric exams were performed in 82 individuals, including controls (n=30), and patients with systemic sclerosis with normal (n=22) and abnormal (n=30) spirometry. Multiple instance classifiers and different supervised machine learning techniques were investigated, including k-nearest neighbours (KNN), random forests (RF), AdaBoost with decision trees (ADAB), and Extreme Gradient Boosting (XGB).Results and discussionThe first experiment of this study showed that the best oscillometric parameter (BOP) was dynamic compliance. In the scenario Control Group versus Patients with Sclerosis and normal spirometry (CGvsPSNS), it provided moderate accuracy (AUC=0.77). In the scenario Control Group versus Patients with Sclerosis and Altered spirometry (CGvsPSAS), the BOP obtained high accuracy (AUC=0.94). In the second experiment, the ML techniques were used. In CGvsPSNS, KNN achieved the best result (AUC=0.90), significantly improving the accuracy in comparison with the BOP (p<0.01), while in CGvsPSAS, RF obtained the best results (AUC=0.97), also significantly improving the diagnostic accuracy (p<0.05). In the third, fourth, fifth, and sixth experiments, the use of different feature selection techniques allowed us to spot the best oscillometric parameters. They all show a small increase in diagnostic accuracy in CGvsPSNS, respectively 0.87,0.86, 0.82, 0.84, while in the CGvsPSAS, the performance of the best classifier remained the same (AUC=0.97). ConclusionsOscillometric principles combined with machine learning algorithm provides a new method for the diagnosis of respiratory changes in patients with systemic sclerosis. The findings of the present study provide evidence that this combination may play an important role in the early diagnosis of respiratory changes in these patients.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ratchadaporn Kanawong ◽  
Tayo Obafemi-Ajayi ◽  
Tao Ma ◽  
Dong Xu ◽  
Shao Li ◽  
...  

ZHENG, Traditional Chinese Medicine syndrome, is an integral and essential part of Traditional Chinese Medicine theory. It defines the theoretical abstraction of the symptom profiles of individual patients and thus, used as a guideline in disease classification in Chinese medicine. For example, patients suffering from gastritis may be classified as Cold or Hot ZHENG, whereas patients with different diseases may be classified under the same ZHENG. Tongue appearance is a valuable diagnostic tool for determining ZHENG in patients. In this paper, we explore new modalities for the clinical characterization of ZHENG using various supervised machine learning algorithms. We propose a novel-color-space-based feature set, which can be extracted from tongue images of clinical patients to build an automated ZHENG classification system. Given that Chinese medical practitioners usually observe the tongue color and coating to determine a ZHENG type and to diagnose different stomach disorders including gastritis, we propose using machine-learning techniques to establish the relationship between the tongue image features and ZHENG by learning through examples. The experimental results obtained over a set of 263 gastritis patients, most of whom suffering Cold Zheng or Hot ZHENG, and a control group of 48 healthy volunteers demonstrate an excellent performance of our proposed system.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1563
Author(s):  
Chi-Jie Lu ◽  
Tian-Shyug Lee ◽  
Chien-Chih Wang ◽  
Wei-Jen Chen

Developing an effective sports performance analysis process is an attractive issue in sports team management. This study proposed an improved sports outcome prediction process by integrating adaptive weighted features and machine learning algorithms for basketball game score prediction. The feature engineering method is used to construct designed features based on game-lag information and adaptive weighting of variables in the proposed prediction process. These designed features are then applied to the five machine learning methods, including classification and regression trees (CART), random forest (RF), stochastic gradient boosting (SGB), eXtreme gradient boosting (XGBoost), and extreme learning machine (ELM) for constructing effective prediction models. The empirical results from National Basketball Association (NBA) data revealed that the proposed sports outcome prediction process could generate a promising prediction result compared to the competing models without adaptive weighting features. Our results also showed that the machine learning models with four game-lags information and adaptive weighting of power could generate better prediction performance.


2020 ◽  
Author(s):  
Ghazal Farhani ◽  
Robert J. Sica ◽  
Mark Joseph Daley

Abstract. While it is relatively straightforward to automate the processing of lidar signals, it is more difficult to choose periods of "good" measurements to process. Groups use various ad hoc procedures involving either very simple (e.g. signal-to-noise ratio) or more complex procedures (e.g. Wing et al., 2018) to perform a task which is easy to train humans to perform but is time consuming. Here, we use machine learning techniques to train the machine to sort the measurements before processing. The presented methods is generic and can be applied to most lidars. We test the techniques using measurements from the Purple Crow Lidar (PCL) system located in London, Canada. The PCL has over 200,000 raw scans in Rayleigh and Raman channels available for classification. We classify raw (level-0) lidar measurements as "clear" sky scans with strong lidar returns, "bad" scans, and scans which are significantly influenced by clouds or aerosol loads. We examined different supervised machine learning algorithms including the random forest, the support vector machine, and the gradient boosting trees, all of which can successfully classify scans. The algorithms where trained using about 1500 scans for each PCL channel, selected randomly from different nights of measurements in different years. The success rate of identification, for all the channels is above 95 %. We also used the t-distributed Stochastic Embedding (t-SNE) method, which is an unsupervised algorithm, to cluster our lidar scans. Because the t-SNE is a data driven method in which no labelling of training set is needed, it is an attractive algorithm to find anomalies in lidar scans. The method has been tested on several nights of measurements from the PCL measurements.The t-SNE can successfully cluster the PCL data scans into meaningful categories. To demonstrate the use of the technique, we have used the algorithm to identify stratospheric aerosol layers due to wildfires.


2021 ◽  
Vol 14 (1) ◽  
pp. 391-402
Author(s):  
Ghazal Farhani ◽  
Robert J. Sica ◽  
Mark Joseph Daley

Abstract. While it is relatively straightforward to automate the processing of lidar signals, it is more difficult to choose periods of “good” measurements to process. Groups use various ad hoc procedures involving either very simple (e.g. signal-to-noise ratio) or more complex procedures (e.g. Wing et al., 2018) to perform a task that is easy to train humans to perform but is time-consuming. Here, we use machine learning techniques to train the machine to sort the measurements before processing. The presented method is generic and can be applied to most lidars. We test the techniques using measurements from the Purple Crow Lidar (PCL) system located in London, Canada. The PCL has over 200 000 raw profiles in Rayleigh and Raman channels available for classification. We classify raw (level-0) lidar measurements as “clear” sky profiles with strong lidar returns, “bad” profiles, and profiles which are significantly influenced by clouds or aerosol loads. We examined different supervised machine learning algorithms including the random forest, the support vector machine, and the gradient boosting trees, all of which can successfully classify profiles. The algorithms were trained using about 1500 profiles for each PCL channel, selected randomly from different nights of measurements in different years. The success rate of identification for all the channels is above 95 %. We also used the t-distributed stochastic embedding (t-SNE) method, which is an unsupervised algorithm, to cluster our lidar profiles. Because the t-SNE is a data-driven method in which no labelling of the training set is needed, it is an attractive algorithm to find anomalies in lidar profiles. The method has been tested on several nights of measurements from the PCL measurements. The t-SNE can successfully cluster the PCL data profiles into meaningful categories. To demonstrate the use of the technique, we have used the algorithm to identify stratospheric aerosol layers due to wildfires.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


Author(s):  
Eun-Seok Choi ◽  
Jae Ang Sim ◽  
Young Gon Na ◽  
Jong- Keun Seon ◽  
Hyun Dae Shin

Abstract Purpose Prompt diagnosis and treatment of septic arthritis of the knee is crucial. Nevertheless, the quality of evidence for the diagnosis of septic arthritis is low. In this study, the authors developed a machine learning-based diagnostic algorithm for septic arthritis of the native knee using clinical data in an emergency department and validated its diagnostic accuracy. Methods Patients (n = 326) who underwent synovial fluid analysis at the emergency department for suspected septic arthritis of the knee were enrolled. Septic arthritis was diagnosed in 164 of the patients (50.3%) using modified Newman criteria. Clinical characteristics of septic and inflammatory arthritis were compared. Area under the receiver-operating characteristic (ROC) curve (AUC) statistics was applied to evaluate the efficacy of each variable for the diagnosis of septic arthritis. The dataset was divided into independent training and test sets (comprising 80% and 20%, respectively, of the data). Supervised machine-learning techniques (random forest and eXtreme Gradient Boosting: XGBoost) were applied to develop a diagnostic model using the training dataset. The test dataset was subsequently used to validate the developed model. The ROC curves of the machine-learning model and each variable were compared. Results Synovial white blood cell (WBC) count was significantly higher in septic arthritis than in inflammatory arthritis in the multivariate analysis (P = 0.001). In the ROC comparison analysis, synovial WBC count yielded a significantly higher AUC than all other single variables (P = 0.002). The diagnostic model using the XGBoost algorithm yielded a higher AUC (0.831, 95% confidence interval 0.751–0.923) than synovial WBC count (0.740, 95% confidence interval 0.684–0.791; P = 0.033). The developed algorithm was deployed as a free access web-based application (www.septicknee.com). Conclusion The diagnosis of septic arthritis of the knee might be improved using a machine learning-based prediction model. Level of evidence Diagnostic study Level III (Case–control study).


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document