scholarly journals PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Heng Zhu ◽  
Miaoyan Wei ◽  
Jin Xu ◽  
Jie Hua ◽  
Chen Liang ◽  
...  
2020 ◽  
Vol 14 ◽  
Author(s):  
Subhajit Makar ◽  
Abhrajyoti Ghosh ◽  
Divya ◽  
Shalini Shivhare ◽  
Ashok Kumar ◽  
...  

: Despite advances in the development of cytotoxic and targeted therapies, pancreatic adenocarcinoma (PAC) remains a significant cause of cancer mortality worldwide. It is also difficult to detect it at an early stage due to numbers of factors. Most of the patients are present with locally advanced or metastatic disease, which precludes curative resection. In the absence of effective screening methods, considerable efforts have been made to identify better systemic treatments during the past decade. This review describes the recent advances in molecular mechanisms involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signalling pathways and various cellular proteins as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions associated with growth factors and their receptors viz. c-MET/HGF, CTHRC1, TGF-β, JAK-STAT, cyclooxygenase pathway, WNT, CCK, MAPK-RAS-RAF, PI3K-AKT, Notch, src, IGF-1R, CDK2NA and chromatin regulation for the sustained growth, survival, and metastasis of pancreatic cancer cells. It also includes various therapeutic strategies viz. immunotherapy, surgical therapy, radiation therapy and chemotherapy.


2021 ◽  
Vol 38 (6) ◽  
Author(s):  
Devashish Desai ◽  
Pushti Khandwala ◽  
Meghana Parsi ◽  
Rashmika Potdar

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3169
Author(s):  
Kevin Doello ◽  
Cristina Mesas ◽  
Francisco Quiñonero ◽  
Gloria Perazzoli ◽  
Laura Cabeza ◽  
...  

Sodium selenite acts by depleting enzymes that protect against cellular oxidative stress. To determine its effect alone or in combination with gemcitabine (GMZ) in pancreatic cancer, we used PANC-1 and Pan02 cell lines and C57BL mice bearing a Pan02-generated tumor. Our results demonstrated a significant inhibition of pancreatic cancer cell viability with the use of sodium selenite alone and a synergistic effect when associated with GMZ. The molecular mechanisms of the antitumor effect of sodium selenite alone involved apoptosis-inducing factor (AIF) and the expression of phospho-p38 in the combined therapy. In addition, sodium selenite alone and in association with GMZ significantly decreased the migration capacity and colony-forming ability, reduced tumor activity in multicellular tumor spheroids (MTS) and decreased sphere formation of cancer stem cells. In vivo studies demonstrated that combined therapy not only inhibited tumor growth (65%) compared to the untreated group but also relative to sodium selenite or GMZ used as monotherapy (up to 40%), increasing mice survival. These results were supported by the analysis of C57BL/6 albino mice bearing a Pan02-generated tumor, using the IVIS system. In conclusion, our results showed that sodium selenite is a potential agent for the improvement in the treatment of pancreatic cancer and should be considered for future human clinical trials.


2015 ◽  
Vol 46 (4) ◽  
pp. 1849-1857 ◽  
Author(s):  
RANGANATHA R. SOMASAGARA ◽  
GAGAN DEEP ◽  
SANGEETA SHROTRIYA ◽  
MANISHA PATEL ◽  
CHAPLA AGARWAL ◽  
...  

2011 ◽  
pp. 57-60
Author(s):  
Toshiyuki Tanahashi ◽  
Shinji Osada ◽  
Hisashi Imai ◽  
Yoshiyuki Sasaki ◽  
Takao Takahashi ◽  
...  

We characterized molecular mechanisms of vitamin K3 (VK3)-induced inhibition of proliferation to evaluate VK3 effectiveness in treating advanced pancreatic cancer. A novel endoscopic drug delivery system, ultrasound injection technique, was used to study local effects of VK3. VK3 inhibited pancreas cancer cell growth by rapid phosphorylation of growth factor receptor and cellular signal factors such as extracellular signal-regulated kinase. VK3 also activated apoptosis, and apoptosis inhibitor antagonized the apoptosis pathway without inhibiting cell growth. Thiol antioxidant treatment completely abrogated VK3-induced ERK but not JNK phosphorylation or inhibition of proliferation. Non-thiol antioxidant did not affect ERK phosphorylation or growth inhibitory actions. Arylation was considered the main mechanism of VK3-induced growth inhibition through ERK activation. VK3 may lead to favorable outcomes in the treatment of pancreatic tumors. Detection of ERK phosphorylation in tissue is important to predict VK3 effect. Endoscopic ultrasound-guided fine-needle injection may be beneficial for treating pancreatic cancer with VK3.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


Sign in / Sign up

Export Citation Format

Share Document