scholarly journals Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yongzhen Mo ◽  
Yumin Wang ◽  
Shuai Zhang ◽  
Fang Xiong ◽  
Qijia Yan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are widely expressed in human cells and are closely associated with cancer development. However, they have rarely been investigated in the context of nasopharyngeal carcinoma (NPC). Methods We screened a new circRNA, circRNF13, in NPC cells using next-generation sequencing of mRNA. Reverse transcription polymerase chain reaction and RNA fluorescence in situ hybridization were used to detect circRNF13 expression in 12 non-tumor nasopharyngeal epithelial (NPE) tissues and 36 NPC samples. Cell proliferation was detected using MTT and flow cytometry assays, and colony formation capability was detected using colony formation assays. Cell migration and invasion were analyzed using wound-healing and Transwell assays, respectively. Cell glycolysis was analyzed using the Seahorse glycolytic stress test. Glucose transporter type 1 (GLUT1) ubiquitination and SUMOylation modifications were analyzed using co-immunoprecipitation and western blotting. CircRNF13 and Small Ubiquitin-like Modifier 2 (SUMO2) interactions were analyzed using RNA pull-down and luciferase reporter assays. Finally, to test whether circRNF13 inhibited NPC proliferation and metastasis in vivo, we used a xenograft nude mouse model generated by means of subcutaneous or tail vein injection. Results We found that circRNF13 was stably expressed at low levels in NPC clinical tissues and NPC cells. In vitro and in vivo experiments showed that circRNF13 inhibited NPC proliferation and metastasis. Moreover, circRNF13 activated the SUMO2 protein by binding to the 3′- Untranslated Region (3′-UTR) of the SUMO2 gene and prolonging the half-life of SUMO2 mRNA. Upregulation of SUMO2 promotes GLUT1 degradation through SUMOylation and ubiquitination of GLUT1, which regulates the AMPK-mTOR pathway by inhibiting glycolysis, ultimately resulting in the proliferation and metastasis of NPC. Conclusions Our results revealed that a novel circRNF13 plays an important role in the development of NPC through the circRNF13-SUMO2-GLUT1 axis. This study implies that circRNF13 mediates glycolysis in NPC by binding to SUMO2 and provides an important theoretical basis for further elucidating the pathogenesis of NPC and targeted therapy.

Author(s):  
Xinping Chen ◽  
Weihua Xu ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Junjie Hu ◽  
...  

Background: Increasing circular RNAs (circRNAs) are reported to participate in cancer progression. Nonetheless, the role of circRNAs in nasopharyngeal carcinoma (NPC) has not been fully clarified. This work is aimed to probe the role of circ_0000215 in NPC.Methods: Circ_0000215 expression in NPC tissues and cell lines was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) assay, scratch healing assay and Transwell experiment were executed to investigate the regulatory function of circ_0000215 on the proliferation, migration and invasion of NPC cells. RNA immunoprecipitation (RIP), pull-down and dual-luciferase reporter experiments were utilized to determine the binding relationship between circ_0000215 and miR-512-5p, and between miR-512-5p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) 3′UTR. The effects of circ_0000215 on NPC growth and metastasis in vivo were examined with nude mice model. Western blot was applied to detect the regulatory effects of circ_0000215 and miR-512-5p on PIK3R1 expression.Results: Circ_0000215 was overexpressed in NPC tissues and cell lines. The functional experiments confirmed that knockdown of circ_0000215 impeded the growth and metastasis of NPC cells in vitro and in vivo. Additionally, circ_0000215 could also work as a molecular sponge to repress miR-512-5p expression. PIK3R1 was validated as a target gene of miR-512-5p, and circ_0000215 could increase the expression level of PIK3R1 in NPC cells via suppressing miR-512-5p.Conclusion: Circ_0000215 is overexpressed in NPC and exerts oncogenic effects in NPC through regulating miR-512-5p/PIK3R1 axis.


2020 ◽  
Vol 29 (4) ◽  
pp. 531-542
Author(s):  
Xiaowen He ◽  
Jun Ma ◽  
Mingming Zhang ◽  
Jianhua Cui ◽  
Hao Yang

Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirui Zhang ◽  
Huanyu Zhao ◽  
Hongmei Yuan ◽  
Jian Wu ◽  
Haiyan Liu ◽  
...  

Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC.Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo.Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo.Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.


2020 ◽  
Vol 15 (1) ◽  
pp. 476-487
Author(s):  
Bin Xiao ◽  
Xusheng Zhang ◽  
Xiaojuan Li ◽  
Zhipeng Zhao

AbstractOsteosarcoma (OS) is a common malignant tumor in the world. Circular RNAs are endogenous non-coding RNAs that have been linked to the development of cancer. However, the role of circ_001569 in OS progression is still unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of circ_001569, microRNA-185-5p (miR-185-5p) and flotillin-2 (FLOT2). The abilities of cell proliferation, migration and invasion were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays, respectively. Also, western blot analysis was performed to assess the levels of epithelial–mesenchymal transition (EMT)-related proteins and FLOT2 protein. Besides, the dual-luciferase reporter assay was used to verify the interactions among circ_001569, miR-185-5p and FLOT2. Circ_001569 expression was increased in OS tissues and cells, and its knockdown reduced the proliferation, migration, invasion and EMT of OS cells. MiR-185-5p could interact with circ_001569. Inhibition of miR-185-5p could recover the suppression effects of silenced-circ_001569 on the proliferation and metastasis of OS cells. Furthermore, FLOT2 was a target of miR-185-5p. Overexpressed FLOT2 could restore the inhibition effects of miR-185-5p mimic on the proliferation and metastasis of OS cells. Also, FLOT2 expression was regulated by circ_001569 and miR-185-5p. In addition, circ_001569 knockdown also reduced the OS tumor growth in vivo. Circ_001569 might act as an oncogene in OS progression by regulating the miR-185-5p/FLOT2 axis, which provided a reliable new approach for the treatment of OS patients.


2020 ◽  
Author(s):  
Xiaolong Gui ◽  
Yan Li ◽  
Xiaobin Zhang ◽  
Ka Su ◽  
Wenlong Cao

Abstract Background: Emerging studies have demonstrated that circular RNAs (circRNAs) are key regulators for tumorigenesis in cancers, including papillary thyroid carcinoma (PTC). In this study, we aimed to explore the effects of circ_LDLR on PTC. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the levels of circ_LDLR, miR-195-5p and lipase H (LIPH). RNase R digestion assay and Actinomycin D assay were utilized to analyze the characteristics of circ_LDLR. Colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay were conducted to evaluate cell proliferation. Western blot assay was used for the determination of protein levels. Flow cytometry analysis was applied to determine cell apoptosis. Transwell assay was performed to determine cell migration and invasion. Dual-luciferase reporter assay was used to verify the associations among circ_LDLR, miR-195-5p and LIPH. The murine xenograft model was constructed to explore the roles of circ_LDLR in vivo. Results: Compared to normal tissues and cells, circ_LDLR was upregulated in PTC tissues and cells. Silencing of circ_LDLR suppressed PTC cell colony formation, proliferation, migration and invasion and promoted apoptosis in vitro and hampered tumor growth in vivo. For mechanism investigation, circ_LDLR could regulate LIPH expression via sponging miR-195-5p. Moreover, miR-195-5p inhibition restored the effects of circ_LDLR knockdown on the malignant behaviors of PTC cells. MiR-195-5p overexpression inhibited PTC cell colony formation, proliferation, migration and invasion and facilitated apoptosis by targeting LIPH. Conclusion: Circ_LDLR knockdown decelerated PTC progression by regulating miR-195-5p/LIPH axis, which might provide a novel therapeutic target for PTC.


Author(s):  
Xia Zhao ◽  
Weilei Dong ◽  
Guifang Luo ◽  
Jing Xie ◽  
Jie Liu ◽  
...  

Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, have been identified as critical regulators in human carcinogenesis. Here, we investigated the precise actions of hsa_circ_0009035 in the progression and radioresistance of cervical cancer (CC). The levels of hsa_circ_0009035, microRNA (miR)-889-3p and homeobox B7 (HOXB7) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease R (RNase R) and Actinomycin D assays were used to assess the stability of hsa_circ_0009035. Cell proliferation, cell cycle progression, apoptosis, migration and invasion were gauged by the Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, respectively. Cell colony formation and survival were determined by the colony formation assay. Targeted correlations among hsa_circ_0009035, miR-889-3p and HOXB7 were examined by the dual-luciferase reporter, RNA immunoprecipitation (RIP) or RNA pull-down assay. Animal studies were performed to evaluate the impact of hsa_circ_0009035 on tumor growth. We found that hsa_circ_0009035 was highly expressed in CC tissues and cells, and it was associated with the radioresistance of CC patients. Moreover, the silencing of hsa_circ_0009035 inhibited CC cell proliferation, migration, invasion, and enhanced apoptosis and radiosensitivity in vitro and weakened tumor growth in vivo. Mechanistically, hsa_circ_0009035 directly targeted miR-889-3p by binding to miR-889-3p, and hsa_circ_0009035 modulated HOXB7 expression through miR-889-3p. HOXB7 was a functional target of miR-889-3p in regulating CC progression and radioresistance in vitro, and hsa_circ_0009035 modulated CC progression and radioresistance in vitro by miR-889-3p. Our current study first identified hsa_circ_0009035 as an important regulation of CC progression and radioresistance at least in part through targeting the miR-889-3p/HOXB7 axis, highlighting its significance as a potential therapeutic target for CC treatment.


2021 ◽  
Vol 16 (1) ◽  
pp. 362-374
Author(s):  
Xiangli Lei ◽  
Meiling Yang ◽  
Zhifang Xiao ◽  
Heng Zhang ◽  
Shuai Tan

Abstract Renal cell carcinoma (RCC) is a common urological malignancy. Circular RNAs (circRNAs) have been confirmed to play an important regulatory role in various cancers. This study aimed to investigate the role and potential mechanism of circTLK1 (hsa_circ_0004442) in RCC. The levels of circTLK1, Cbl proto-oncogene (CBL), and microRNA-495-3p (miR-495-3p) were detected by quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation, cycle arrest and apoptosis, migration, and invasion were assessed by colony formation, flow cytometry, scratch, and transwell assays. The levels of E-cadherin and Vimentin were measured by western blot. The targeting relationship between miR-495-3p and miR-495-3p or CBL was verified by dual-luciferase reporter assay. Tumor growth in vivo was evaluated by xenograft assay. The results found that circTLK1 and CBL were up-regulated in RCC tissues and cells. Silencing of circTLK1 or CBL inhibited proliferation and metastasis and accelerated apoptosis in RCC cells. In addition, circTLK1 directly bound to miR-495-3p, and CBL was the target of miR-495-3p. circTLK1 sponged miR-495-3p to increase CBL expression. Moreover, knockdown of circTLK1 suppressed tumor growth in vivo. In conclusion, down-regulation of circTLK1 restrained proliferation and metastasis and promoted apoptosis in RCC cells by modulating miR-495-3p/CBL axis.


2020 ◽  
Author(s):  
Qiliang Cai ◽  
Jiancheng Pan ◽  
Enli Liang ◽  
Dingrong Zhang ◽  
Cheng Fang ◽  
...  

Abstract Background: Prostate cancer (PCa) is one of the most common malignancies in men. Circular RNAs (circRNAs) are known to be the important regulators in cancer progression. However, the role of circRNAs in PCa is yet to be investigated. Therefore, this study focuses on investigating the effect and the underlying molecular mechanisms of hsa_circ_0001686 (circ_0001686) in PCa. Methods: Sample tissues were collected from the PCa patients to carry out the microarray expression profile of the human circRNAs. In addition, the expression levels of circ_0001686, has_miR-411-5p (miR-411-5p), SMAD3, and TGFBR2 were also detected by qRT-RCR. Next, transfection experiments were employed to measure the effect of circ_0001686 on cell proliferation, migration, and invasion in the PCa cell lines (CWR22RV1and LNCaP). These effects were analyzed using MTT, colony formation, transwell, and scratch wound assays, respectively. The si-circ_0001686 was used as a negative control. Starbase and TargetScan databases were used to predict the putative binding sites among circ_0001686, miR-411-5p, and SMAD3/TGFBR2. The dual-luciferase reporter assays were performed to verify these interactions. Furthermore, the levels of SMAD3 and TGFBR2 in CWR22RV1 and LNCaP cells were measured by western blot. Finally, in vivo experiments in the nude mouse model were carried out to strengthen the in vitro findings. Results: The expression of circ_0001686 was markedly up-regulated while the expression of miR-411-5p was down-regulated in PCa cells. Moreover, circ_0001686 promoted cell proliferation, migration, and invasion. Molecular mechanism exploration revealed that circ_0001686 acts as a sponge of miR-411-5p which affects the downstream target gene SMAD3, and TGFBR2. Both the in vitro and in vivo studies verified that miR-411-5p inhibits cancer growth and metastasis in PCa.Conclusions: The circ_0001686 sequesters miR-411-5p to increase the expression of SMAD3/TGFBR2 which consequently promotes the proliferation, invasion, and migration in PCa cells.


2020 ◽  
Author(s):  
Xiaolong Gui ◽  
Yan Li ◽  
Xiaobin Zhang ◽  
Ka Su ◽  
Wenlong Cao

Abstract Background: Emerging studies have demonstrated that circular RNAs (circRNAs) are key regulators for tumorigenesis in cancers, including papillary thyroid carcinoma (PTC). In this study, we attempted to explore the effects of circ_LDLR on PTC. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was adopted to determine the levels of circ_LDLR, miR-195-5p and lipase H (LIPH). RNase R digestion assay and Actinomycin D assay were utilized to analyze the characteristics of circ_LDLR. Colony formation assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay were employed to evaluate cell proliferation. Western blot assay was used for the determination of protein levels. Flow cytometry analysis was applied to determine cell apoptosis. Transwell assay was performed to assess cell migration and invasion. Dual-luciferase reporter assay was used to verify the associations among circ_LDLR, miR-195-5p and LIPH. The murine xenograft model was constructed to explore the roles of circ_LDLR in vivo . Results: Compared to normal tissues and cells, circ_LDLR was upregulated in PTC tissues and cells. Silencing of circ_LDLR suppressed PTC cell colony formation, proliferation, migration and invasion and promoted apoptosis in vitro and hampered tumor growth in vivo. For mechanism investigation, circ_LDLR could regulate LIPH expression via sponging miR-195-5p. Moreover, miR-195-5p inhibition restored the effects of circ_LDLR knockdown on the malignant behaviors of PTC cells. MiR-195-5p overexpression inhibited PTC cell colony formation, proliferation, migration and invasion and facilitated apoptosis by targeting LIPH. Conclusion: Circ_LDLR knockdown decelerated PTC progression by regulating miR-195-5p/LIPH axis, which might provide a novel therapeutic target for PTC.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


Sign in / Sign up

Export Citation Format

Share Document