scholarly journals Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Ajay Kumar Bhardwaj ◽  
Geeta Arya ◽  
Raj Kumar ◽  
Lamy Hamed ◽  
Hadi Pirasteh-Anosheh ◽  
...  

AbstractThe worldwide agricultural enterprise is facing immense pressure to intensify to feed the world’s increasing population while the resources are dwindling. Fertilizers which are deemed as indispensable inputs for food, fodder, and fuel production now also represent the dark side of the intensive food production system. With most crop production systems focused on increasing the quantity of produce, indiscriminate use of fertilizers has created havoc for the environment and damaged the fiber of the biogeosphere. Deteriorated nutritional quality of food and contribution to impaired ecosystem services are the major limiting factors in the further growth of the fertilizer sector. Nanotechnology in agriculture has come up as a better and seemingly sustainable solution to meet production targets as well as maintaining the environmental quality by use of less quantity of raw materials and active ingredients, increased nutrient use-efficiency by plants, and decreased environmental losses of nutrients. However, the use of nanofertilizers has so far been limited largely to controlled environments of laboratories, greenhouses, and institutional research experiments; production and availability on large scale are still lagging yet catching up fast. Despite perceivable advantages, the use of nanofertilizers is many times debated for adoption at a large scale. The scenario is gradually changing, worldwide, towards the use of nanofertilizers, especially macronutrients like nitrogen (e.g. market release of nano-urea to replace conventional urea in South Asia), to arrest environmental degradation and uphold vital ecosystem services which are in critical condition. This review offers a discussion on the purpose with which the nanofertilizers took shape, the benefits which can be achieved, and the challenges which nanofertilizers face for further development and real-world use, substantiated with the significant pieces of scientific evidence available so far. Graphical Abstract

1991 ◽  
Vol 5 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Charles T. Bryson ◽  
Edward M. Croom

Annual wormwood has been cultivated on a small scale for production of the artemisinin class of antimalarial drugs in sufficient quantities for preclinical and clinical trials. Large scale cultivation will require a reliable, efficient crop production system. Production systems using 32 herbicides alone or in combinations were evaluated in growth chamber, greenhouse, and field experiments at Stoneville, MS from 1985 through 1988. The herbicide treatments that provided the best weed control were (A) metolachlor at 2.2 kg ai ha-1preemergence (PRE), (B) chloramben at 2.2 kg ai ha-1(PRE), or (C) trifluralin at 0.6 kg ai ha-1preplant soil incorporated (PPI) followed by fluazifop at 0.2 + 0.2 kg ai ha-1postemergence broadcast (POST) and acifluorfen at 0.6 kg ai ha-1(POST). These herbicide production systems provided excellent weed control (≥85%) and minimal crop injury (≤10%) with no effect on crop height or weight at harvest. Production of artemisinin was not reduced by herbicide treatments A, B, and C in 1987 and treatments B and C in 1988 when compared with the hand-weeded plots.


2021 ◽  
Vol 23 (3) ◽  
pp. 238-255
Author(s):  
YOGENDRA KUMAR ◽  

Enhancing nutrient use efficiency (NUE) with minimal threat to environment has become critical for our agriculture food production systems (FPS) to sustain the burgeoning population. Nanotechnology with nanoscale inputs for production of nano agri-inputs (NAIPs) has emerged as an innovative solution for addressing issue of low or declining nutrient use efficiency (NUE) with minimal environment footprint. Nanotechnology is a promising field of research which has the potential to offer sustainable solutions to ever pressing challenges confronting our modern intensive agriculture. Nanotechnology employs nanomaterials which typically have small size (1–100 nm) which imparts unique characteristics and benefits. In addition to numerous other benefits, large surface area to volume ratio offers opportunity for better and effective interaction of nanoparticles to target sites. Nano-fertilizers hold potential to fulfil plant nutrition requirements along with imparting sustainability to crop production systems and that too without compromising the crops yield. Indian Farmers Fertilizer Cooperative Limited (IFFCO) - the farmers’ own fertilizer cooperative has been in the forefront for promotion of agro-technologies and novel agri-inputs to mitigate problems faced by the farmers. It has indigenously innovated at its Nano Biotechnology Research Centre (NBRC) at Kalol, Gujarat and succeeded in R& D and manufacturing of proprietary nano-fertilizers viz. nano urea, nano zinc, and nano copper. These nano-fertilizers utilize the dynamics of shape, size, surface area and bio-assimilation. There efficacy was evaluated on the basis of multi-location multi-crop trials under varying crop seasons, both by the research institutes and also on the progressive farmers’ fields across 11,000 locations on 94 crops across India. Independently, nano nitrogen, nano zinc, and nano copper have also been tested for bio-efficacy- bio safety- toxicity and environment suitability. IFFCO nano-fertilizers meet alll the current national and international guidelines related to nano technology or nano scale agri-inputs.They are in sync with OECD testing guidelines (TGs) and “Guidelines for Testing of NAIPs and Food Products” released by the Department of Biotechnology, Government of India. Harvested produce of crops applied with IFFCO nano-Urea, nano-zinc, and nano-copper have been found fit for consumption with no adverse effect. This paper reviews the benefits of nanofertilizers (Nano N, Nano Zn and Nano Cu) towards increasing nutrient use efficiency and crop productivity and produce quality in general and the journey of IFFCO nano-fertilizers (IFFCO’s Nano Urea, Nano Zn and Nano Cu) from conception to PILOT to PLANT stage has also been covered in this paper.


1999 ◽  
Vol 9 (1) ◽  
pp. 78-85 ◽  
Author(s):  
Frank J. Dainello ◽  
Larry Stein ◽  
Guy Fipps ◽  
Kenneth White

Competition for limited water supplies is increasing world wide. Especially hard hit are the irrigated crop production regions, such as the Lower Rio Grande Valley and the Winter Garden areas of south Texas. To develop production techniques for reducing supplemental water needs of vegetable crops, an ancient water harvesting technique called rainfall capture was adapted to contemporary, large scale irrigated muskmelon (Cucumis melo var. reticulatus L.) production systems. The rainfall capture system developed consisted of plastic mulched miniature water catchments located on raised seed beds. This system was compared with conventional dry land and irrigated melon production. Rainfall capture resulted in 108% average yield increase over the conventional dry land technique. When compared with conventional furrow irrigation, rainfall capture increased marketable muskmelon yield as much as 5355 lb/acre (6000 kg·ha-1). As anticipated,the drip irrigation/plastic mulch system exceeded rainfall capture in total and marketable fruit yield. The results of this study suggest that rainfall capture can reduce total supplemental water use in muskmelon production. The major benefit of the rainfall capture system is believed to be in its ability to eliminate or decrease irrigation water needed to fill the soil profile before planting.


Author(s):  
Cathy Hawes

Abstract Current food production systems are major contributors to the environmental degradation that leads to climate change and biodiversity loss. Levels of production required for future food security cannot be met by further increases in inputs of non-renewable resources. The world's food crops must therefore be managed in a sustainable way that maintains long-term ecological functioning, including nutrient, carbon and water cycles, soil quality, primary productivity, microbe-plant associations, pest and pathogen regulation, pollination and arable food web resilience. All of these are determined by agronomic practices at local and regional scales, and all are sustained by the abundance, diversity and functional composition of plants, microbes and invertebrates in the farmed ecosystem. Presence of viable populations and communities of these organisms is therefore essential for system resilience. Long-term sustainability must rely more heavily on the internal generation of products and regulatory ecosystem services than on external inputs. Fully closed systems are impossible to achieve in agriculture as the product is removed for human consumption. There is ample evidence, however, that semi-closed, regenerative, systems can harness the ecosystem services provided by functional biodiversity to enhance crop production whilst simultaneously improving environmental quality. Here, agroecological alternatives to intensive farming practices are reviewed, focusing on key functional indicators and whole-system integration of practical management options designed to achieve multiple beneficial outcomes at field and farm scales.


2021 ◽  
Vol 13 (23) ◽  
pp. 13060
Author(s):  
Bohwi Lee

Bamboo is a widely used natural resource, yet it cannot be managed sustainably without considering its social and environmental potentials. This study compared and evaluated the difference in demands and values of two stakeholder groups (local community and forestry experts) toward various ecosystem services for local bamboo forests and suggested interventions for decision-makers in Laos. This study selected six provisioning, five regulating, two cultural, and two habitat services and evaluated each group for its public perception of and priorities for bamboo forests using a 4-point Likert scale and 100 preference points. Both groups showed higher perceptions and priorities for provisioning and cultural services, which are helpful for sustaining livelihoods. The perceptions and priorities of the community group concerning regulating services (e.g., natural hazard regulation, water purification, and fresh air regulation) to improve crop production were higher than those of the expert group, but regarding the carbon sequestration, the expert group scored higher. Carbon sequestration, a public good provided on a large scale, could be perceived when there is a high level of understanding and interest in bamboo forests through environmental education. In habitat services, there was no significant difference between the groups. Experts should actively consider these differences in demands and public perception when making decisions about bamboo management to promote services that villagers have difficulty perceiving and draw intervention points accordingly in national policies for bamboo resources.


2016 ◽  
Vol 9 (2) ◽  
pp. 465-491 ◽  
Author(s):  
Ronald S. Zalesny ◽  
John A. Stanturf ◽  
Emile S. Gardiner ◽  
James H. Perdue ◽  
Timothy M. Young ◽  
...  

2021 ◽  
Author(s):  
Clemence Muitire ◽  
Casper Kamutando ◽  
Martin Moyo

World population is projected to reach 10 billion by 2050 and the phenomenon is expected to cause a surge in demand for food, feed and industrial raw materials. Cereals (i.e., carbohydrate-rich grain crops) are the most widely grown and consumed crops worldwide. All cereals combined provide approximately 56% and 50% of global energy and protein needs, respectively. Maize, wheat, rice, barley and sorghum are the most produced and consumed cereals, globally. These are widely grown across the world from the tropics to the temperate regions. Although efforts are being done by governments, research organizations and academic institutions to increase productivity of these important crops, huge yield deficits still exist. Climate induced biotic (e.g., pests and diseases) as well as abiotic stresses (especially; heat and drought) are widely regarded as the key yield-constraining factors of most cereal crops. Given the contribution of cereals in global food and nutrition security, improvements in productivity of cereal production systems is mandatory if livelihoods are to be guaranteed. This chapter discusses the global production and utilization of four of the major global cereals, limiting factors to their productivity and possible solutions to the production constraints.


Author(s):  
Haiyang Zhang ◽  
◽  
Jeff R. Powell ◽  

Arbuscular mycorrhizal (AM) fungi assist with plant acquisition of nutrients, with most studies focussing on the nutrient forms taken up and translocated to the host. Recent studies have focussed on how extraradical fungal hyphae can affect nutrient ransformations, leaching and movement. However, it is still unclear the extent that nutrient cycling is influenced in agricultural contexts. Moreover, much of the mechanistic knowledge is limited to a few plants and fungi studied under controlled conditions, suggesting a need for innovation addressing the broader diversity of agricultural AM plant-fungal associations. This chapter summarises how AM fungi can influence specific soil nutrient processes, then focuses specifically on AM fungi in crop production systems and examples of (in)compatibilities in these systems. These research areas are then contextualized with new approaches to understand AM fungal roles in nutrient acquisition and utilisation, which the authors propose will lead to applications in improving nutrient use efficiency of agroecosystems.


Sign in / Sign up

Export Citation Format

Share Document