scholarly journals GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jin Wang ◽  
Di Wang ◽  
Moupan Cen ◽  
Danni Jing ◽  
Jiali Bei ◽  
...  

Abstract Background Cancer is the most serious world's health problems on the global level and various strategies have been developed for cancer therapy. Pillar[5]arene-based supramolecular therapeutic nano-platform (SP/GOx NPs) was constructed successfully via orthogonal dynamic covalent bonds and intermolecular H-bonds with the assistance of glucose oxidase (GOx) and exhibited efficient targeted/synergistic chemo-chemodynamic cancer therapy. Methods The morphology of SP/GOx NPs was characterized by DLS, TEM, SEM and EDS mapping. The cancer therapy efficinecy was investigated both in vivo and in vitro. Results SP/GOx NPs can load drug molecules (Dox) and modify target molecule (FA-Py) on its surface conveniently. When the resultant FA-Py/SP/GOx/Dox NPs enters blood circulation, FA-Py will target it to cancer cells efficiently, where GOx can catalyst the overexpressed glucose to generate H2O2. Subsequently, the generated H2O2 in cancer cells catalyzed by ferrocene unit to form •OH, which can kill cancer cells. Furthermore, the loaded Dox molecules released under acid microenvironment, which can further achieve chemo-therapy. Conclusion All the experiments showed that the excellent antitumor performance of FA-Py/SP/GOx/Dox NPs, which provided an new method for pillar[5]arene-based supramolecular polymer for biomedical applications. Graphical Abstract

2021 ◽  
Author(s):  
Jin Wang ◽  
Di Wang ◽  
Moupan Cen ◽  
Danni Jing ◽  
Jiali Bei ◽  
...  

Abstract Bacground:Cancer is the most serious world's health problems on the global level and various strategies have been developed for cancer therapy. Pillar[5]arene-based supramolecular therapeutic nano-platform (SP/GOx NPs) was constructed successfully via orthogonal dynamic covalent bonds and intermolecular H-bonds with the assistance of glucose oxidase (GOx) and exhibited efficient targeted/synergistic chemo-chemodynamic cancer therapy.Method: The morphology of SP/GOx NPs was characterized by DLS, TEM, SEM and EDS mapping. The cancer therapy efficinecy was investigated both in vivo and in vitro.Results: SP/GOx NPs can load drug molecules (Dox) and modify target molecule (FA-Py) on its surface conveniently. When the resultant FA-Py/SP/GOx/Dox NPs enters blood circulation, FA-Py will target it to cancer cells efficiently, where GOx can catalyst the overexpressed GO to generate H2O2. Subsequently, the generated H2O2 in cancer cells catalyzed by ferrocene unit to form •OH, which can kill cancer cells. Furthermore, the loaded Dox molecules released under acid microenvironment, which can further achieve chemo-therapy.Conclusion: All the experiments showed that the excellent antitumor performance of FA-Py/SP/GOx/Dox NPs, which provided an new method for pillar[5]arene-based supramolecular polymer for biomedical applications.


2020 ◽  
Vol 10 (4) ◽  
pp. 358-390
Author(s):  
Revathi Paramasivam Oviya ◽  
Gopisetty Gopal

Nanomedicines are rapidly evolving in chemotherapy and image-guided theranostics for specific and controlled delivery of the target therapeutic molecule. Targeting the subcellular organelles of cancer cells has gained focus in the recent decade for precise targeting of cancer cells and the activation of specific cancer death pathways. This strategy also overcomes the limitations of conventional chemo and radiation therapies, such as non-specificity and toxicity to the surrounding healthy tissue. Diverse roles of mitochondria in cancer, including oxidative stress signaling, metabolic reprogramming, cell death evasion, and cell survival mechanism, make it a promising target for cancer therapy. However, targeting mitochondria is tedious due to its complex structure and strong negative membrane potential. Various studies have designed mitochondria specific inorganic-, polymer-, dendrimer-, peptide- and protein-based nanoformulations to overcome barriers in targeting mitochondria of cancer cells. In this review, we have summarized the recently developed mitochondria-targeted nanoformulations in the field of chemotherapy, imageguided phototherapy, and combinatorial therapies. These nanoformulations showed enhanced cell penetration and mitochondrial accumulation of the drug molecules. In vitro and in vivo studies have shown promising results and further pre-clinical and clinical studies are required to develop these nanoformulations as effective cancer therapy.


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


2020 ◽  
Author(s):  
Lungwani Muungo

Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report thecharacterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, andnonimmunogenic PMLA [poly(b-L-malic acid)]. The PMLA nanoplatform was synthesized for repetitive systemictreatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model. Various moieties werecovalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directedagainst HER2/neu mRNA, to block new HER2/neu receptor synthesis; anti-HER2/neu antibody trastuzumab(Herceptin), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptorantibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the hostendothelial system. The results of the study showed that the lead drug tested significantly inhibited the growth ofHER2/neu-positive breast cancer cells in vitro and in vivo by enhanced apoptosis and inhibition of HER2/neureceptor signaling with suppression of Akt phosphorylation. In vivo imaging analysis and confocal microscopydemonstrated selective accumulation of the nanodrug in tumor cells via an active delivery mechanism. Systemictreatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth andtumor regression, as compared with partial (50%) tumor growth inhibition in mice treated with trastuzumab orAON, either free or attached to PMLA. Our findings offer a preclinical proof of concept for use of the PMLAnanoplatform for combination cancer therapy.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyuan He ◽  
Chulian Gong ◽  
Jie Qin ◽  
Mingan Li ◽  
Shaohong Huang

Abstract Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victoria D. Turubanova ◽  
Tatiana A. Mishchenko ◽  
Irina V. Balalaeva ◽  
Iuliia Efimova ◽  
Nina N. Peskova ◽  
...  

AbstractThe immunogenicity of dying cancer cells determines the efficacy of anti-cancer therapy. Photodynamic therapy (PDT) can induce immunogenic cell death (ICD), which is characterized by the emission of damage-associated molecular patterns (DAMPs) from dying cells. This emission can trigger effective anti-tumor immunity. Only a few photosensitizers are known to induce ICD and, therefore, there is a need for development of new photosensitizers that can induce ICD. The purpose of this work was to analyze whether photosensitizers developed in-house from porphyrazines (pz I and pz III) can induce ICD in vitro and in vivo when used in PDT. We indetified the optimal concentrations of the photosensitizers and found that, at a light dose of 20 J/cm2 (λex 615–635 nm), both pz I and pz III efficiently induced cell death in cancer cells. We demonstrate that pz I localized predominantly in the Golgi apparatus and lysosomes while pz III in the endoplasmic reticulum and lysosomes. The cell death induced by pz I-PDT was inhibited by zVAD-fmk (apoptosis inhibitor) but not by ferrostatin-1 and DFO (ferroptosis inhibitors) or by necrostatin-1 s (necroptosis inhibitor). By contrast, the cell death induced by pz III-PDT was inhibited by z-VAD-fmk and by the necroptosis inhibitor, necrostatin-1 s. Cancer cells induced by pz I-PDT or pz III-PDT released HMGB1 and ATP and were engulfed by bone marrow-derived dendritic cells, which then matured and became activated in vitro. We demonstrate that cancer cells, after induction of cell death by pz I-PDT or pz III-PDT, are protective when used in the mouse model of prophylactic tumor vaccination. By vaccinating immunodeficient mice, we prove the role of the adaptive immune system in protecting against tumours. All together, we have shown that two novel porphyrazines developed in-house are potent ICD inducers that could be effectively applied in PDT of cancer.


2020 ◽  
Vol 20 (12) ◽  
pp. 1398-1414 ◽  
Author(s):  
Elham Hosseinzadeh ◽  
Ali Hassanzadeh ◽  
Faroogh Marofi ◽  
Mohammad Reza Alivand ◽  
Saeed Solali

: As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14053-e14053
Author(s):  
Masayuki Hiraki ◽  
Caining Jin ◽  
Maroof Alam ◽  
Takahiro Maeda ◽  
Masaru Murata ◽  
...  

e14053 Background: Aberrant expression of MCL-1 and BFL-1, the pro-survival members of the Bcl-2 family, is a major cause of drug resistance in human cancers. Mucin 1 (MUC1) is a heterodimeric oncoprotein that is aberrantly expressed in most human carcinomas. Notably, there is no known relationship between the oncogenic MUC1 C-terminal subunit (MUC1-C) and these anti-apoptotic proteins. Methods: MUC1-C was targeted in breast, lung and colon cancer cells by a stable shRNA, a tetracycline-inducible shRNA, or a pharmacologic peptide inhibitor GO-203. MCL-1 was inhibited by siRNA or the MS-1 peptide. In vitro and in vivo studies were conducted using our polymeric nanoparticles (NPs) for intracellular delivery of peptide cargos. Cells were selected for resistance to ABT-737 or ABT-263, which target BCL-2, BCL-XL and BCL-w, but not MCL-1 and BFL-1. Results: Targeting MCL-1 with MS-1/NPs inhibited the survival of parental cancer cells in vitro and in vivo, and was associated with upregulation of BFL-1 levels. In addition, MS-1/NPs treatment had limited effects on ABT-resistant cells because of increased BFL-1 expression. Importantly, we found that targeting MUC1-C is associated with suppression of both MCL-1 and BFL-1. Mechanistically, MUC1-C (i) stabilizes MCL-1 by activating the MEK→ERK and PI3K→AKT pathways, and (ii) induces BFL-1 through the NF-κB p65 pathway. Treatment with GO-203/NPs suppressed proliferation of parental and ABT-resistant cells. In addition, we show that combining GO-203 with ABT-737 is synergistic in inhibiting survival of parental and ABT-resistant cells. Conclusions: These findings demonstrate that targeting MUC1-C with GO-203/NPs is a potential strategy for abrogating MCL-1- and BFL-1-mediated resistance.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Jianling Bi ◽  
Shujie Yang ◽  
Long Li ◽  
Qun Dai ◽  
Nicholas Borcherding ◽  
...  

Abstract Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death driven by lipid hydroperoxides within biological membranes. Although therapy-resistant mesenchymal-high cancers are particularly vulnerable to ferroptosis inducers, especially phospholipid glutathione peroxidase 4 (GPx4) inhibitors, the underlying mechanism is yet to be deciphered. As such, the full application of GPx4 inhibitors in cancer therapy remains challenging. Here we demonstrate that metadherin (MTDH) confers a therapy-resistant mesenchymal-high cell state and enhanced sensitivity to inducers of ferroptosis. Mechanistically, MTDH inhibited GPx4, as well as the solute carrier family 3 member 2 (SLC3A2, a system Xc− heterodimerization partner), at both the messenger RNA and protein levels. Our metabolomic studies demonstrated that MTDH reduced intracellular cysteine, but increased glutamate levels, ultimately decreasing levels of glutathione and setting the stage for increased vulnerability to ferroptosis. Finally, we observed an enhanced antitumor effect when we combined various ferroptosis inducers both in vitro and in vivo; the level of MTDH correlated with the ferroptotic effect. We have demonstrated for the first time that MTDH enhances the vulnerability of cancer cells to ferroptosis and may serve as a therapeutic biomarker for future ferroptosis-centered cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document