scholarly journals Aquaporin 3 promotes human extravillous trophoblast migration and invasion

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingqi Nong ◽  
Shifen Li ◽  
Wenjuan Liu ◽  
Xiqian Zhang ◽  
Lin Fan ◽  
...  

Abstract Problem Does aquaporin 3 (AQP3) affect the migration and invasion of human extravillous trophoblast (HTR8/Svneo) cells? Method of study A lentivirus infection system was used to construct stable cell lines with either AQP3 knockdown or overexpression. RT-PCR and western blotting were used to verify the efficiencies of AQP3 knockdown or overexpression in HTR8/Svneo cells at mRNA and protein levels, respectively. Cell Counting Kit-8 and flow cytometry assays were used to detect the influence of AQP3 knockdown or overexpression on proliferation and apoptosis of HTR8/Svneo cells. In addition, wound healing and Transwell invasion assays were used to detect the effects of AQP3 knockdown or overexpression on migration and invasion capabilities of HTR8/Svneo cells. An Agilent gene chip was used to screen for significant differentially expressed genes after AQP3 knockdown. Finally, mechanisms by which AQP3 influences the migration and invasion of HTR8/Svneo cells were explored using bioinformatic analysis. Results Compared with controls, migration and invasion capabilities of HTR8/Svneo cells were significantly reduced after AQP3 knockdown, and significantly increased after AQP3 overexpression. Subsequent bioinformatic analysis of gene chip expression profiles indicated downregulation of genes related to adhesion such as PDGF-B, as well as signaling pathways (such as PIK3/AKT, NF-κB, and TNF) after AQP3 knockdown. Conclusions AQP3 could significantly promote migration and invasion capabilities of human extravillous trophoblasts, it may mediate embryo invasion and adhesion to endometrium by regulating PDGF-B, PIK3/AKT signaling pathways, although this requires further verification.

2020 ◽  
Author(s):  
Ying-qi Nong ◽  
Shi-fen Li ◽  
Wen-juan Liu ◽  
Xi-qian Zhang ◽  
Lin Fan ◽  
...  

Abstract Problem: Does aquaporin 3 (AQP3) affect the migration and invasion of human extravillous trophoblast (HTR8/Svneo) cells?Method of Study: A lentivirus infection system was used to construct stable cell lines with either AQP3 knockdown or overexpression. RT-PCR and western blotting were used to verify the efficiencies of AQP3 knockdown or overexpression in HTR8/Svneo cells at mRNA and protein levels, respectively. Cell Counting Kit-8 and flow cytometry assays were used to detect the influence of AQP3 knockdown or overexpression on proliferation and apoptosis of HTR8/Svneo cells. In addition, wound healing and Transwell invasion assays were used to detect the effects of AQP3 knockdown or overexpression on migration and invasion capabilities of HTR8/Svneo cells. An Agilent gene chip was used to screen for significant differentially expressed genes after AQP3 knockdown. Finally, mechanisms by which AQP3 influences the migration and invasion of HTR8/Svneo cells were explored using bioinformatic analysis.Results: Compared with controls, migration and invasion capabilities of HTR8/Svneo cells were significantly reduced after AQP3 knockdown, and significantly increased after AQP3 overexpression. Subsequent bioinformatic analysis of gene chip expression profiles indicated downregulation of genes related to adhesion such as PDGF-B, as well as signaling pathways (such as PIK3/AKT, NF-κB, and TNF) after AQP3 knockdown. Conclusions: AQP3 could significantly promote migration and invasion capabilities of human extravillous trophoblasts, it may mediate embryo invasion and adhesion to endometrium by regulating PDGF-B、PIK3/AKT signaling pathways, although this requires further verification.


2021 ◽  
Author(s):  
Yingqi Nong ◽  
Shifen Li ◽  
Wenjuan Liu ◽  
Xiqian Zhang ◽  
Lin Fan ◽  
...  

Abstract Problem: Does aquaporin 3 (AQP3) affect the migration and invasion of human extravillous trophoblast (HTR8/Svneo) cells?Method of Study: A lentivirus infection system was used to construct stable cell lines with either AQP3 knockdown or overexpression. RT-PCR and western blotting were used to verify the efficiencies of AQP3 knockdown or overexpression in HTR8/Svneo cells at mRNA and protein levels, respectively. Cell Counting Kit-8 and flow cytometry assays were used to detect the influence of AQP3 knockdown or overexpression on proliferation and apoptosis of HTR8/Svneo cells. In addition, wound healing and Transwell invasion assays were used to detect the effects of AQP3 knockdown or overexpression on migration and invasion capabilities of HTR8/Svneo cells. An Agilent gene chip was used to screen for significant differentially expressed genes after AQP3 knockdown. Finally, mechanisms by which AQP3 influences the migration and invasion of HTR8/Svneo cells were explored using bioinformatic analysis.Results: Compared with controls, migration and invasion capabilities of HTR8/Svneo cells were significantly reduced after AQP3 knockdown, and significantly increased after AQP3 overexpression. Subsequent bioinformatic analysis of gene chip expression profiles indicated downregulation of genes related to adhesion such as PDGF-B, as well as signaling pathways (such as PIK3/AKT, NF-κB, and TNF) after AQP3 knockdown. Conclusions: AQP3 could significantly promote migration and invasion capabilities of human extravillous trophoblasts, it may mediate embryo invasion and adhesion to endometrium by regulating PDGF-B, PIK3/AKT signaling pathways, although this requires further verification.


2021 ◽  
Author(s):  
Yingqi Nong ◽  
Shifen Li ◽  
Wenjuan Liu ◽  
Xiqian Zhang ◽  
Lin Fan ◽  
...  

Abstract Problem: Does aquaporin 3 (AQP3) affect the migration and invasion of human extravillous trophoblast (HTR8/Svneo) cells?Method of Study: A lentivirus infection system was used to construct stable cell lines with either AQP3 knockdown or overexpression. RT-PCR and western blotting were used to verify the efficiencies of AQP3 knockdown or overexpression in HTR8/Svneo cells at mRNA and protein levels, respectively. Cell Counting Kit-8 and flow cytometry assays were used to detect the influence of AQP3 knockdown or overexpression on proliferation and apoptosis of HTR8/Svneo cells. In addition, wound healing and Transwell invasion assays were used to detect the effects of AQP3 knockdown or overexpression on migration and invasion capabilities of HTR8/Svneo cells. An Agilent gene chip was used to screen for significant differentially expressed genes after AQP3 knockdown. Finally, mechanisms by which AQP3 influences the migration and invasion of HTR8/Svneo cells were explored using bioinformatic analysis.Results: Compared with controls, migration and invasion capabilities of HTR8/Svneo cells were significantly reduced after AQP3 knockdown, and significantly increased after AQP3 overexpression. Subsequent bioinformatic analysis of gene chip expression profiles indicated downregulation of genes related to adhesion such as PDGF-B, as well as signaling pathways (such as PIK3/AKT, NF-κB, and TNF) after AQP3 knockdown. Conclusions: AQP3 could significantly promote migration and invasion capabilities of human extravillous trophoblasts, it may mediate embryo invasion and adhesion to endometrium by regulating PDGF-B, PIK3/AKT signaling pathways, although this requires further verification.


2020 ◽  
Author(s):  
Yingqi Nong ◽  
Shifen Li ◽  
Wenjuan Liu ◽  
Xiqian Zhang ◽  
Lin Fan ◽  
...  

Abstract Problem: Does aquaporin 3 (AQP3) affect the migration and invasion of human extravillous trophoblast (HTR8/Svneo) cells?Method of Study: A lentivirus infection system was used to construct stable cell lines with either AQP3 knockdown or overexpression. RT-PCR and western blotting were used to verify the efficiencies of AQP3 knockdown or overexpression in HTR8/Svneo cells at mRNA and protein levels, respectively. Cell Counting Kit-8 and flow cytometry assays were used to detect the influence of AQP3 knockdown or overexpression on proliferation and apoptosis of HTR8/Svneo cells. In addition, wound healing and Transwell invasion assays were used to detect the effects of AQP3 knockdown or overexpression on migration and invasion capabilities of HTR8/Svneo cells. An Agilent gene chip was used to screen for significant differentially expressed genes after AQP3 knockdown. Finally, mechanisms by which AQP3 influences the migration and invasion of HTR8/Svneo cells were explored using bioinformatic analysis.Results: Compared with controls, migration and invasion capabilities of HTR8/Svneo cells were significantly reduced after AQP3 knockdown, and significantly increased after AQP3 overexpression. Subsequent bioinformatic analysis of gene chip expression profiles indicated downregulation of genes related to adhesion such as PDGF-B, as well as signaling pathways (such as PIK3/AKT, NF-κB, and TNF) after AQP3 knockdown. Conclusions: AQP3 could significantly promote migration and invasion capabilities of human extravillous trophoblasts, it may mediate embryo invasion and adhesion to endometrium by regulating PDGF-B, PIK3/AKT signaling pathways, although this requires further verification.


Epigenomics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 513-530
Author(s):  
Xi Zeng ◽  
Chao Tan ◽  
Meile Mo ◽  
Xiaoling Qin ◽  
Xiaoyun Ma ◽  
...  

Aim: To explore the expression profiles and functions of circRNAs in hepatocellular carcinoma (HCC). Materials & methods: We obtained circRNA expression profiles through RNA sequencing. Expression levels of circRNAs were confirmed by quantitative real-time PCR. The effects on HCC progression were determined using Cell Counting Kit 8, clone formation and transwell assays. Results: We identified 114 upregulated and 144 downregulated circRNAs in HCC tissues. The results of quantitative real-time PCR showed that circGNAO1, circRNF180 and circMERTK were significantly downregulated in HCC tissues, whereas circSNX6 was significantly upregulated. CircRNF180 was associated with microvascular invasion. Overexpression of circRNF180 inhibits the proliferation, colony formation, migration and invasion of HCC cells. Conclusion: CircRNF180 may function as a tumor suppressor and could serve as a potential biomarker and therapeutic target in HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. Methods Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. Results XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. Conclusions XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2068-2068
Author(s):  
Xi Huang ◽  
Enfan Zhang ◽  
Xing Guo ◽  
Jing Chen ◽  
Xuanru Lin ◽  
...  

Abstract Background: Multiple myeloma (MM) is among the most common hematologic malignancies. Proteasome inhibitor bortezomib (Bor) is one of the most effective drugs for treatment of MM. However, during long-term Bor treatment, MM cells may eventually develop acquired-resistance to Bor which results in recurrence and a poor prognosis of MM. Several researches show that E3 ubiquitin ligases (E3s) primarily determine the substrate specificity of ubiquitin proteasome system and play an essential role in Bor resistance of MM. NEDD4-1 E3s, a founding member of the Neural precursor cell-Expressed Developmentally Downregulated gene 4 (NEDD4) family, was proved to involve in the proliferation, migration, invasion of cancer cells and the sensitivity of anticancer therapies. Our current study aims to explore the role and underlying mechanism of NEDD4-1 in acquired resistance of Bor in MM. Methods: The mRNA and protein levels of NEDD4-1 and its substrates in MM cell lines (H929, LP-1, RPMI8226, OPM-2 and ARP-1) and MM patients were detected by Quantitative Realtime PCR and Western Blotting. Lentiviral plasmids containing shRNA against NEDD4-1 were transfected into MM cells. Cell viability, proliferation and apoptosis of MM cells were measured by Cell Counting kit8 (CCK8) and flow cytometry. Gene array was used to compare the gene expression profiles of a panel of Bor treated MM cells vs vehicle-treated MM cells. Results: Gene array showed NEDD4-1 was significantly increased in MM cells treated with Bor. MM cells (CD138+ plasma cells of the bone marrow) from refractory/recurrence patients expressed lower NEDD4-1 than primary patient myeloma cells. Also, MM cell lines H929, ARP-1, LP-1 highly expressed NEDD4-1 at mRNA and protein levels. RPMI8226 and OPM-2 were relatively low expressed. Cell growth assay displayed no significant difference in proliferation between the NEDD4-1 knockdown (KD) and the control group (P>0.05). After suppression of NEDD4-1 using shRNAs, the killing effect of Bor in MM was significantly weaker than the control group (P<0.05). We also found that PTEN was decreased in the NEDD4-1 KD H929 cell line. Otherwise, phospho-STAT3 (ser727) and oncoprotein c-Myc and Bcl-2 were upregulated. Conclusion: Collectively, our study reveals that inhibition of NEDD4-1 can reduce MM sensitivity to Bor via regulating PTEN, c-Myc and Bcl-2, may be related to JAK/STAT signaling pathway, which suggests that NEDD4-1 probably acts as a novel drug target and therapeutic paradigm in the battle against multiple myeloma. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jiansheng Xie ◽  
Hui Wang ◽  
Caiqun Luo ◽  
Xiaoxia Wu ◽  
Jianming Zhang ◽  
...  

Abstract Background: Various circular RNAs (circRNAs) are dysregulated in the placenta of fetal growth restriction fetuses, but their role and regulatory mechanisms have not been fully elucidated. Herein, we aimed to elucidate the role of hsa_circ_0081343 in regulating the migration, invasion, and apoptosis in the human extravillous trophoblast HTR-8 cells.Methods: circRNA and miRNA levels were examined using quantitative real-time PCR (RT-PCR). Overexpression plasmid constructs and siRNA were used to overexpress and knockdown hsa_circ_0081343, respectively. Transwell assay and flow cytometry analysis were performed to evaluate the effect of hsa_circ_0081343 or miR-210-5p on migration, invasion, and apoptosis. Protein levels were analyzed using western blot. Dual luciferase activity assay and anti-AGO2 RNA immunoprecipitation (RIP) assays were performed to identify the relationship between miR-210-5p and hsa_circ_0081343.Results: Hsa_circ_0081343 expression was significantly downregulated in 37 FGR placental tissues as compared to healthy placental control tissues. Hsa_circ_0081343 overexpression possibly inhibits apoptosis by downregulating the expression of cleaved caspase 3 and caspase 9 and alleviates the migration and invasion of HTR-8 cells by inducing the expression of MMP2 and MMP9. The dual luciferase activity and anti-AGO2 RIP assay results showed that hsa_circ_0081343 binds to miR-210-5p. miR-210-5p overexpression eliminated the effect of hsa_circ_0081343 overexpression in HTR-8 cells. Finally, DLX3 was identified as a direct target of miR-210-5p. Conclusions: Hsa_circ_0081343 regulates the migration, invasion, and apoptosis of HTR-8 cells via the hsa-miR-210-5p/DLX3 axis. Thus, hsa_circ_0081343 plays a key role in the etiology and pathogenesis of FGR implicating its importance as a novel candidate for targeted FGR therapy.


2018 ◽  
Vol 48 (6) ◽  
pp. 2483-2492 ◽  
Author(s):  
Xinling Zhang ◽  
Chunxiang Zhang ◽  
Nan Wang ◽  
Yan Li ◽  
Debing Zhang ◽  
...  

Background/Aims: Acute myocardial infarction is a serious disease with high morbidity and mortality. microRNAs (miRNAs) have been proved to play an important role in modulating myocardial ischemia and reperfusion injury. Hence, in this study, we constructed H9c2 cell model to elucidate the roles of microRNA-486 (miR-486) in preventing hypoxia-induced damage in H9c2 cells. Methods: H9c2 cells were cultured in hypoxic incubator with 1% O2 to simulate hypoxia and/or transfected with miR-486 mimic, scramble, anti-miR-486, si-N-myc downstream-regulated gene 2 (NDRG2) and their corresponding negative controls (NC). Effects of miR-486 and/or NDRG2 dysregulation on hypoxia-induced myocardial injury in H9c2 cells were investigated by evaluating cell viability, migration, invasion and apoptosis using Cell Counting Kit-8 (CCK-8), transwell assay, flow cytometry, respectively. The proteins expression and RNA expression were detected by western blot and quantitative real time polymerase chain reaction (qRT-PCR), respectively. Results: Hypoxia treatment induced damage in H9c2 cells by decreasing cell viability, migration and invasion and increasing cell apoptosis. Moreover, hypoxia inhibited the expression of miR-486 in H9c2 cells. Overexpression of miR-486 alleviated hypoxia-induced myocardial injury in H9c2 cells, while suppression of miR-486 further aggravated hypoxia-induced injury. Furthermore, NDRG2 expression was negatively regulated by miR-486, and NDRG2 was confirmed as a target of miR-486. Knockdown of NDRG2 alleviated the effects of miR-486 suppression on hypoxia-induced myocardial injury. Besides, knockdown of NDRG2 markedly inhibited the activation of c-Jun N-terminal kinase (JNK) /c-jun and nuclear factor κB (NF-κB) signaling pathways in hypoxia-induced H9c2 cells. Conclusion: Our findings indicate that miR-486 may alleviate hypoxia-induced myocardial injury possibly by targeting NDRG2 to inactivate JNK/c-jun and NF-κB signaling pathways. miR-486 may be a potential target for treating ischemic myocardial injury following acute myocardial infarction.


Author(s):  
Ramah M. Abdallah ◽  
Aisha M. Elkhouly ◽  
Raghda A. Soliman ◽  
Nahed El Meckawy ◽  
Ahmed El Sebaei ◽  
...  

Background: Recently, a novel crosstalk between non-coding RNAs (ncRNAs) has been casted. However, this has been seldomly investigated in metastatic BC (mBC). H19 and miR-486-5p role in mBC is controversial. ICAM-1 is a recently recognized metastatic engine in mBC. Natural compounds were recently found to alter ncRNAs/target circuits. Yet, Hesperitin modulatory role in altering such circuits has never been investigated in mBC. Objective: The aim of this study is to investigate the impact of hesperitin on miR-486-5p/H19/ICAM-1 axis Methodology: BC patients (n=20) were recruited in the study. Bioinformatic analysis was performed using different prediction softwares. MDA-MB-231 and MCF-7 cells were cultured and transfected using several oligonucleotides or treated with serial dilutions of hesperitin. RNA was extracted and gene expression analysis was performed using q-RT-PCR. ICAM-1 protein levels were assessed using human ICAM-1 Elisa Kit. Cytotoxic potential of hesperitin against normal cells was assessed by LDH assay. Several functional analysis experiments were performed such as MTT, colony forming and migration assays. Results: The study showed that miR-486-5p and H19 has a paradoxical expression profiles in mBC patients. miR-486-5p mimics and H19 siRNAs repressed ICAM-1 and halted mBC hallmarks. A novel crosstalk between miR-486-5p and H19 was observed highlighting a bi-directional relationship between them. Hesperetin restored the expression of miR-486-5p, inhibited H19 lncRNA and ICAM-1 expression and selectively regressed mBC cell aggressiveness. Conclusion: miR-486-5p and H19 are inter-connected upstream regulators for ICAM-1 building up miR-486-5p/H19/ICAM-1 axis that has been successfully tuned in mBC cells by hesperitin


Sign in / Sign up

Export Citation Format

Share Document